forked from Rmalavally/rocm-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cpp
202 lines (176 loc) · 7.58 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// MIT License
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "example_utils.hpp"
#include "hipsolver_utils.hpp"
#include <hipsolver/hipsolver.h>
#include <hip/hip_runtime.h>
#include <cstdlib>
#include <iostream>
#include <vector>
int main(const int /*argc*/, char* /*argv*/[])
{
// Initialize leading dimensions of input matrices A and B.
constexpr int n = 3;
constexpr int lda = n;
constexpr int ldb = n;
// Initialize vectors with elements of A and B:
// | 3.5 0.5 0.0 |
// A = | 0.5 3.5 0.0 |
// | 0.0 0.0 2.0 |
// | 10 2 3 |
// B = | 2 10 5 |
// | 3 5 10 |
const std::vector<double> A{3.5, 0.5, 0.0, 0.5, 3.5, 0.0, 0.0, 0.0, 2.0};
const std::vector<double> B{10.0, 2.0, 3.0, 2.0, 10.0, 5.0, 3.0, 5.0, 10.0};
// Define input matrices size.
const unsigned int size_A = lda * n;
const unsigned int size_B = ldb * n;
// Allocate device memory for the input and outputs.
double* d_A{};
double* d_B{};
double* d_W{};
int* d_sygvj_info{};
HIP_CHECK(hipMalloc(&d_A, sizeof(double) * size_A));
HIP_CHECK(hipMalloc(&d_B, sizeof(double) * size_B));
HIP_CHECK(hipMalloc(&d_W, sizeof(double) * n));
HIP_CHECK(hipMalloc(&d_sygvj_info, sizeof(int)));
// Copy input matrices A and B from host to device.
HIP_CHECK(hipMemcpy(d_A, A.data(), sizeof(double) * size_A, hipMemcpyHostToDevice));
HIP_CHECK(hipMemcpy(d_B, B.data(), sizeof(double) * size_B, hipMemcpyHostToDevice));
// Use the hipSOLVER API to create a handle.
hipsolverHandle_t hipsolver_handle;
HIPSOLVER_CHECK(hipsolverCreate(&hipsolver_handle));
// Working space variables.
int lwork{};
double* d_work{};
// Configuration of syevj.
hipsolverSyevjInfo_t syevj_params = nullptr;
const double tol = 1.e-10;
const int max_sweeps = 15;
const hipsolverEigType_t itype = HIPSOLVER_EIG_TYPE_1; // A*x = (lambda)*B*x
const hipsolverEigMode_t jobz = HIPSOLVER_EIG_MODE_VECTOR; // compute eigenvectors
const hipsolverFillMode_t uplo = HIPSOLVER_FILL_MODE_LOWER;
HIPSOLVER_CHECK(hipsolverCreateSyevjInfo(&syevj_params));
// Default value of tolerance is machine zero.
HIPSOLVER_CHECK(hipsolverXsyevjSetTolerance(syevj_params, tol));
// Default value of max. sweeps is 100.
HIPSOLVER_CHECK(hipsolverXsyevjSetMaxSweeps(syevj_params, max_sweeps));
// Query and allocate working space.
HIPSOLVER_CHECK(hipsolverDsygvj_bufferSize(hipsolver_handle,
itype,
jobz,
uplo,
n,
d_A,
lda,
d_B,
ldb,
d_W,
&lwork,
syevj_params));
HIP_CHECK(hipMalloc(&d_work, lwork));
// Compute spectrum (written to d_W) and eigenvectors (writtten to d_A).
HIPSOLVER_CHECK(hipsolverDsygvj(hipsolver_handle,
itype,
jobz,
uplo,
n,
d_A,
lda,
d_B,
ldb,
d_W,
d_work,
lwork,
d_sygvj_info,
syevj_params));
// Check returned info value.
int syevj_info{};
HIP_CHECK(hipMemcpy(&syevj_info, d_sygvj_info, sizeof(syevj_info), hipMemcpyDeviceToHost));
int errors{};
if(syevj_info == 0)
{
std::cout << "Eigenvalues successfully computed: ";
// Copy the resulting vector of eigenvalues to the host.
std::vector<double> W(n, 0);
HIP_CHECK(hipMemcpy(W.data(), d_W, sizeof(double) * n, hipMemcpyDeviceToHost));
// Print eigenvalues and compare them with the expected values.
const std::vector<double> expected_eigenvalues{0.158660256604, 0.370751508101882, 0.6};
for(int i = 0; i < n; ++i)
{
std::cout << W[i] << (i < n - 1 ? ", " : "\n");
errors += std::abs(expected_eigenvalues[i] - W[i]) > tol;
}
// Copy the resulting vector of eigenvectors to the host.
std::vector<double> V(size_A, 0);
HIP_CHECK(hipMemcpy(V.data(), d_A, sizeof(double) * size_A, hipMemcpyDeviceToHost));
std::cout << "Eigenvectors:" << std::endl;
for(int i = 0; i < n; ++i)
{
std::cout << "{ ";
for(int j = 0; j < n; ++j)
{
std::cout << V[i * lda + j] << (j < n - 1 ? ", " : " }\n");
}
}
// Numerical results of syevj.
double residual{};
int executed_sweeps{};
HIPSOLVER_CHECK(hipsolverXsyevjGetResidual(hipsolver_handle, syevj_params, &residual));
HIPSOLVER_CHECK(
hipsolverXsyevjGetSweeps(hipsolver_handle, syevj_params, &executed_sweeps));
std::cout << "Residual = " << residual << std::endl;
std::cout << "Number of executed sweeps = " << executed_sweeps << std::endl;
}
else
{
if(syevj_info < 0)
{
std::cout << "Parameter number " << -syevj_info << " is wrong.";
}
else if(syevj_info <= n)
{
std::cout << "Leading minor of order " << syevj_info
<< " of B is not positive definite.";
}
else if(syevj_info == n + 1)
{
std::cout << "Sygvj does not converge, error " << syevj_info << ".";
}
else
{
std::cout << "Unknown error " << syevj_info << ".";
}
std::cout << std::endl;
++errors;
}
// Free resources.
HIP_CHECK(hipFree(d_A));
HIP_CHECK(hipFree(d_B));
HIP_CHECK(hipFree(d_W));
HIP_CHECK(hipFree(d_work));
HIP_CHECK(hipFree(d_sygvj_info));
HIPSOLVER_CHECK(hipsolverDestroySyevjInfo(syevj_params));
HIPSOLVER_CHECK(hipsolverDestroy(hipsolver_handle));
// Print validation result.
return report_validation_result(errors);
}