forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gemm_kernel_utils.h
257 lines (235 loc) · 10.8 KB
/
gemm_kernel_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/arch/mma.h"
////////////////////////////////////////////////////////////////////////////////
// Some helper functions
////////////////////////////////////////////////////////////////////////////////
#define DISPATCH_TYPES(tensor, func) \
{ \
if (query.scalar_type() == at::ScalarType::Float) { \
using scalar_t = float; \
func(); \
} else if (query.scalar_type() == at::ScalarType::Half) { \
using scalar_t = cutlass::half_t; \
func(); \
} else if (query.scalar_type() == at::ScalarType::BFloat16) { \
using scalar_t = cutlass::bfloat16_t; \
func(); \
} else { \
XFORMERS_CHECK(false, "Only fp32, half & bf16 supported at the moment"); \
} \
}
#define DISPATCH_BOOL(BOOL_V, BOOL_NAME, F) \
{ \
if (BOOL_V) { \
constexpr bool BOOL_NAME = true; \
F(); \
} else { \
constexpr bool BOOL_NAME = false; \
F(); \
} \
}
#define DISPATCH_ARCHTAG(CC, func) \
{ \
if (CC >= 80) { \
using ArchTag = cutlass::arch::Sm80; \
func(); \
} else if (CC >= 75) { \
using ArchTag = cutlass::arch::Sm75; \
func(); \
} else if (CC >= 70) { \
using ArchTag = cutlass::arch::Sm70; \
func(); \
} else if (CC >= 50) { \
using ArchTag = cutlass::arch::Sm50; \
func(); \
} else { \
XFORMERS_CHECK( \
false, \
"Your device is too old. We require compute capability >= 50"); \
} \
}
#define CHECK_NOSPARSE_CONTIGUOUS_CUDA(TENSOR) \
XFORMERS_CHECK(TENSOR.is_cuda(), #TENSOR " must be a CUDA tensor"); \
XFORMERS_CHECK(!TENSOR.is_sparse(), #TENSOR " must be a dense tensor"); \
XFORMERS_CHECK(TENSOR.is_contiguous());
#define CHECK_NOSPARSE_LASTCONTIGUOUS_CUDA(TENSOR) \
XFORMERS_CHECK(TENSOR.is_cuda(), #TENSOR " must be a CUDA tensor"); \
XFORMERS_CHECK(!TENSOR.is_sparse(), #TENSOR " must be a dense tensor"); \
XFORMERS_CHECK( \
TENSOR.stride(-1) == 1, #TENSOR ": last dimension must be contiguous");
#ifdef TORCH_CHECK
#define CHECK_ALIGNED_PTR(PTR, ALIGNMENT) \
XFORMERS_CHECK( \
uint64_t(PTR) % ALIGNMENT == 0, #PTR " is not correctly aligned")
#define XFORMERS_CHECK TORCH_CHECK
#elif defined(__CUDACC_RTC__)
#define CHECK_ALIGNED_PTR(PTR, ALIGNMENT) \
if (!(uint64_t(PTR) % ALIGNMENT == 0)) { \
return false; \
}
#define XFORMERS_CHECK(COND, ERR) \
if (!(COND)) { \
return false; \
}
#else
#include <iostream>
#define CHECK_ALIGNED_PTR(PTR, ALIGNMENT) \
if (!(uint64_t(PTR) % ALIGNMENT == 0)) { \
std::cerr << #PTR " is not correctly aligned\n"; \
return false; \
}
#define XFORMERS_CHECK(COND, ERR) \
if (!(COND)) { \
std::cerr << "'" #COND "' failed: " << ERR << "\n"; \
return false; \
}
#endif
#define ASSIGN_CHECK_OVERFLOW(A, B) \
{ \
A = B; \
XFORMERS_CHECK( \
B < std::numeric_limits<decltype(A)>::max(), #B " overflows"); \
}
namespace gemm_kernel_utils {
template <typename integer>
constexpr CUTLASS_HOST_DEVICE integer ceil_div(integer n, integer m) {
return (n + m - 1) / m;
}
template <typename integer>
constexpr CUTLASS_HOST_DEVICE integer align_up(integer n, integer m) {
return ((n + m - 1) / m) * m;
}
////////////////////////////////////////////////////////////////////////////////
// Determine the type of GEMM we do (TensorCores or not, Shapes ...)
// TODO: Maybe we could rely on Cutlass's DefaultGemm templates
////////////////////////////////////////////////////////////////////////////////
// Fallback to Simt (FMA on cuda cores) if not in a special case below
template <typename ArchTag, typename scalar_t_, typename Enable = void>
struct DefaultGemmType {
static constexpr int ThreadK = 8;
static constexpr int WarpK = 8;
static constexpr int kMinimumAlignment = 1;
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 1>;
using OpClass = cutlass::arch::OpClassSimt;
using Operator = cutlass::arch::OpMultiplyAdd;
};
// Specialization for tensorcores with f32
template <typename ArchTag>
struct DefaultGemmType<
ArchTag,
float,
typename cutlass::platform::enable_if<
ArchTag::kMinComputeCapability >= 80>::type> {
static constexpr int ThreadK = 32;
static constexpr int WarpK = 32;
static constexpr int kMinimumAlignment = 4;
using OpClass = cutlass::arch::OpClassTensorOp;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Operator = cutlass::arch::OpMultiplyAddFastF32;
};
// Specialization for tensorcores with f16/bf16 - Sm75+
template <typename ArchTag, typename scalar_t>
struct DefaultGemmType<
ArchTag,
scalar_t,
typename cutlass::platform::enable_if<
ArchTag::kMinComputeCapability >= 75 &&
cutlass::sizeof_bits<scalar_t>::value == 16>::type> {
static constexpr int ThreadK = 32;
static constexpr int WarpK = 32;
static constexpr int kMinimumAlignment = 4;
using OpClass = cutlass::arch::OpClassTensorOp;
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
// Specialization for tensorcores with f16 - Volta
template <>
struct DefaultGemmType<cutlass::arch::Sm70, cutlass::half_t, void> {
static constexpr int ThreadK = 32;
static constexpr int WarpK = 32;
static constexpr int kMinimumAlignment = 2;
using OpClass = cutlass::arch::OpClassTensorOp;
using InstructionShape = cutlass::gemm::GemmShape<8, 8, 4>;
using Operator = cutlass::arch::OpMultiplyAdd;
};
// Enables to do
// `auto x = kCondition ? fa(arg) : fb(arg)`
// when `fa` and `fb` have different types
template <bool kVal, typename TA, typename TB>
struct call_conditional;
template <typename TA, typename TB>
struct call_conditional<true, TA, TB> {
template <typename Arg>
static CUTLASS_HOST_DEVICE auto apply(TA ta, TB tb, Arg arg)
-> decltype(ta(arg)) {
return ta(arg);
}
};
template <typename TA, typename TB>
struct call_conditional<false, TA, TB> {
template <typename Arg>
static CUTLASS_HOST_DEVICE auto apply(TA ta, TB tb, Arg arg)
-> decltype(tb(arg)) {
return tb(arg);
}
};
////////////////////////////////////////////////////////////////////////////////
// Mark a variable as warp-uniform - enables some compiler optimizations
// The cheapest way to do it is just to broadcast it from lane 0
////////////////////////////////////////////////////////////////////////////////
template <typename T>
CUTLASS_DEVICE T warp_uniform(T value) {
struct {
union {
T value;
uint32_t asInt;
};
} p;
p.value = value;
p.asInt = __shfl_sync(0xffffffff, (unsigned)p.asInt, 0);
return p.value;
}
template <typename T>
CUTLASS_DEVICE T* warp_uniform(T* ptr) {
struct {
union {
T* ptr;
uint32_t asInt[2];
};
} p;
p.ptr = ptr;
p.asInt[0] = warp_uniform(p.asInt[0]);
p.asInt[1] = warp_uniform(p.asInt[1]);
return p.ptr;
}
} // namespace gemm_kernel_utils