-
Notifications
You must be signed in to change notification settings - Fork 3
/
model_train_val.py
132 lines (102 loc) · 4.63 KB
/
model_train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import matplotlib.pyplot as plt
import time
import copy
from dataset_builder import *
from PIL import Image, ImageFile
from torch.autograd import Variable
from torchvision import transforms
ImageFile.LOAD_TRUNCATED_IMAGES = True
from IPython.display import display, Markdown
def train_model(datasets, dataloaders, model, criterion, optimizer, scheduler, checkpoint_path, num_epochs=25, device = "cpu"):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
epoch_loss = 0
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / len(datasets[phase])
epoch_acc = running_corrects.double() / len(datasets[phase])
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
torch.save(model,checkpoint_path+"/"+str(epoch)+".pt")
'''torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': epoch_loss,
},checkpoint_path+"/"+str(epoch)+".pt")'''
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def visualize_model(class_names, dataloaders, model, num_images=6, device = "cpu"):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
def pred_image(model,img_path,class_names,transform_pipeline,show_image=False,device="cpu"):
image = Image.open(img_path)
if(show_image):
display(image)
image_transformed = transform_pipeline(image).to(device)
image_transformed = image_transformed.unsqueeze(0)
image_transformed = Variable(image_transformed)
prediction = model(image_transformed.float()) # Returns a Tensor of shape (batch, num class labels)
predicted_idx = prediction.data.cpu().numpy().argmax() # Our prediction will be the index of the class label with the largest value.
probability = round(float(prediction.data.cpu().numpy().max()),1)
print(f"Predicted Index : {predicted_idx}, Class : {class_names[predicted_idx]}, Confidence Level : {probability}%")