-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathspectral-clustering.Rmd
190 lines (154 loc) · 4.83 KB
/
spectral-clustering.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
title: "Spectral Clustering"
description: |
This script defines the functions which are used to perform spectral clustering.
output:
distill::distill_article:
toc: true
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(eval = FALSE)
```
# Calculate Affinity Matrix
Calculate affinity matrix for spectral clustering. Code is derived from the [`SNFtool` package](http://compbio.cs.toronto.edu/SNF/SNF/Software.html), see associated publication in *Nature Methods* [here](https://www.nature.com/articles/nmeth.2810).
```{r calculate-affinity}
#' @param diff
affinityCustom = function (diff, sigma = 0.5)
{
N <- nrow(diff)
diff <- (diff + t(diff))/2
diag(diff) <- 0
sortedColumns <- as.matrix(t(apply(diff, 2, sort)))
finiteMean <- function(x) {
return(mean(x[is.finite(x)]))
}
# this line has been modified to remove [, 1:K + 1]
means <- apply(sortedColumns, 1, finiteMean) +
.Machine$double.eps
avg <- function(x, y) {
return((x + y)/2)
}
Sig <- outer(means, means, avg)/3 * 2 + diff/3 + .Machine$double.eps
Sig[Sig <= .Machine$double.eps] <- .Machine$double.eps
densities <- dnorm(diff, 0, sigma * Sig, log = FALSE)
W <- (densities + t(densities))/2
return(W)
}
```
# Z-Scores
## Calculate Z-Score
```{r calculate-z}
#' @param sf string; C(CERAD)/B(Braak);
#' @param level string; level of CERAD or Braak stage;
#' @param mData matrix; expression matrix
#' @param cov data.table; clinical data
to_z_score = function(sf, level, mDataG, cov){
if(!all(colnames(mDataG) == cov$projid)){
stop()
}
if(sf == "C"){
cat("select CERAD", level, "samples..\n")
remove_proj = cov[,is.na(C) | is.na(E)]
if(any(remove_proj)){
cat("remove", sum(remove_proj), "samples with missing values..\n")
mDataG = mDataG[, !remove_proj]
cov = cov[!is.na(C) & !is.na(E),]
}
E = cov[C == level, E]
sel = cov$C == level
}else if(sf == "B"){
cat("select Braak", level, "samples..\n")
remove_proj = cov[,is.na(B) | is.na(E)]
if(any(remove_proj)){
cat("remove", sum(remove_proj),"samples with missing values..\n")
mDataG = mDataG[, !remove_proj]
cov = cov[!is.na(B) & !is.na(E),]
}
E = cov[B == level, E]
sel = cov$B == level
}else{
stop()
}
means = rowMeans(mDataG[, sel])
sds = apply(mDataG[, sel], 1, sd)
zscore = function(x) return((x - means)/sds)
mData_z = apply(mDataG[, sel], 2, zscore)
# check should be TRUE
cat("random check:",
all(mData_z[9,] == (mDataG[9,sel] - mean(as.numeric(mDataG[9,sel])))/sd(as.numeric(mDataG[9,sel]))),
"\n")
return(list(z = mData_z, E = E, mData = mDataG[, sel],
means = means, sds = sds))
}
```
## Calculate Average Z-Score
```{r average-z}
#' @param z_list list; list generated by to_z_score()
to_ave_z = function(z_list){
z = z_list$z
E = z_list$E
return(data.table(Genes = rownames(z),
E2 = rowMeans(z[, E == "E2"]),
E3 = rowMeans(z[, E == "E3"]),
E4 = rowMeans(z[, E == "E4"])))
}
```
# Spectral Clustering
```{r spectral-clustering}
#' @param avez data.table/data.frame/matrix containing the average z-scores of E2, E3, and E4
#' @param k number of cluster
spectral_clustering = function(avez, k){
set.seed(9)
zMtx = as.matrix(avez[, c("E2", "E3", "E4")])
rownames(zMtx) = avez$Genes
zMtx = zMtx[!duplicated(rownames(zMtx)), ]
# calculate distance matrix
distM = zMtx %>% dist2(., .) %>% .^(1/2)
# calculate similarity matrix
simM = affinityCustom(distM)
# perform spectral clustering
clustA = spectralClustering(simM, K = k)
return(list(clustA = clustA,
zMtx = zMtx))
}
```
# Statistical Testing
Statistical testing of interested microglia-*APOE* genes across *APOE* genotypes.
```{r statistical testing}
#' @param z matrix; z
#' @param genes vector; vector of interested genes
#' @param cov data.table; clinical data
#' @param adj.donor T/F; adjusted by donor or not
#' @param donor donor id; need provide if adj.donor = T
test_avez = function(zmtx, clust_genes, cov, donor = NULL, adj.donor = FALSE){
data = data.frame(
ave_z = colMeans(zmtx[clust_genes, ]),
APO = cov$E)
if(levels(cov$E)[1] != "E3"){
stop("must use E3 as reference\n")
}
if(adj.donor){
require(lme4)
library(lmerTest)
data$donor = donor
fit = lmer(ave_z ~ (1|donor)+ APO, data = data)
}else{
fit = lm(ave_z ~ APO, data = data)
}
return(summary(fit, confint = TRUE, digits = 3))
}
```
# Hypergeometric Tests
Hypergeometric tests of interested microglia-*APOE* genes across *APOE* genotypes.
```{r hypergeometric-tests}
#' @param genes1 vector;
#' @param genes2 vector;
phyper_test = function(genes1, genes2){
q = length(intersect(genes1, genes2))
s = length(genes1)
n = nrow(mData)
m = length(genes2)
p = phyper(q,m,n,s, lower.tail = F)
return(p)
}
```