Skip to content

Latest commit

 

History

History
218 lines (169 loc) · 8.78 KB

CHANGELOG.md

File metadata and controls

218 lines (169 loc) · 8.78 KB

Change Log

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

UNRELEASED

Added

Changed

v1.7.2

Added

Changed

  • update MWAA to 2.10.1
  • update MWAA dependencies
  • update ray modules to use kubectl handler role & update CDK to 2.166.0
  • update IDF module versions to 1.13.0
  • pin MWAA requirements file version

v1.7.1

Added

  • added mlflow-ai-gw-image module

Changed

  • changed ray-image to pull from AWS Public ECR to avoid docker pull rate limits
  • changed ray-orchestrator to not retrieve full training job logs and avoid States.DataLimitExceeded
  • update ray-on-eks manifest cluster resources

v1.7.0

Added

  • added GitHub as code repository option along with AWS CodeCommit for sagemaker templates batch_inference, finetune_llm_evaluation, hf_import_models and xgboost_abalone
  • added ray-orchestrator module
  • added GitHub as alternate option for code repository support along with AWS CodeCommit for sagemaker-templates-service-catalog module
  • added SageMaker ground truth labeling module

Changed

  • updated manifests to idf release 1.12.0

v1.6.0

Added

  • added new manifest manifests/fine-tuning-6B

Changed

  • updated mlflow version to 2.16.0 to support LLM tracing
  • remove CDK overhead from mlflow-image module
  • renamed mlflow manifests and updated README.MD
  • added head tolerations & node labels for flexible ray cluster pods scheduling

v1.5.0

Added

  • added documentation for MWAA Sagemaker training DAG manifest
  • added documentation for Ray on EKS manifests
  • added network isolation and inter container encryption for xgboost template
  • added partition support for modules:
    • fmops/sagemaker-jumpstart-fm-endpoint
    • sagemaker/sagemaker-endpoint
    • sagemaker/sagemaker-notebook
    • sagemaker/sagemaker-studio
  • added Bedrock fine-tuning manifest

Changed

  • added accelerate as extra for transformers in finetune llm template
  • limited bucket name length in templates to avoid pipeline failures when using long project names
  • increased timeout on finetune_llm_evaluation project from 1 hour (default) to 4 hours
  • pin ray-operator, ray-cluster, and ray-image modules versions
  • pin module versions for all manifests
  • the sagemaker/sagemaker-model-package-promote-pipeline module no longer generates a Docker image
  • lowercase fine-tuning-6b deployment name due to CDK resource naming constraints

v1.4.0

Added

  • adds workflow specific to changes for requirements-dev.txt so all static checks are run
  • add ray-cluster module based on kuberay-helm charts
  • added FSx for Lustre to ray-on-eks manifest & persistent volume claim to ray-cluster module
  • added worker tolerations to ray-cluster module

Changed

  • add integration tests for sagemaker-studio
  • bump ecr module version to 1.10.0 to consume auto-delete images feature
  • add service account to kuberay
  • updated get-modules workflow to only run tests against changed files in modules/**
  • Updated the sagemaker-templates-service-catalog module documentation to match the code layout.
  • Modernize sagemaker-templates-service-catalog packaging and remove unused dependencies.
  • remove custom manifests via dataFiles from ray-on-eks
  • refactor ray-on-eks to ray-cluster and ray-operator modules
  • downscope ray-operator service account permissions
  • add an example custom ray-image
  • document available manifests in readme
  • add permission for SM studio to describe apps when domain resource isolation is enabled
  • updated ray-on-eks manifest to use latest EKS IDF release

v1.3.0

Added

  • added ray-on-eks, and manifests/ray-on-eks manifests
  • added a sagemaker-model-monitoring-module module with an example of data quality, model quality, model bias, and model explainability monitoring of a SageMaker Endpoint
  • added an option to enable data capture in the sagemaker-endpoint-module
  • added a personas example module to deploy various roles required for an AI/ML project
  • added sagemaker-model-cicd module
  • added sagemaker_domain_arn as optional input for multiple modules, tags resources created with domain ARN to support domain resource isolation
  • added enable_network_isolation as optional input for sagemaker-endpoint module, defaults to true
  • added enable_domain_resource_isolation as optional input for sagemaker-studio module, adds IAM policy to studio roles preventing the access of resources from outside the domain, defaults to true
  • added StudioDomainArn as output from sagemaker-studio module
  • added enable_network_isolation as parameter for model_deploy template

Changed

  • remove explicit module manifest account/region mappings from fmops-qna-rag
  • moved CI/CD infra to separate repository and added self mutation pipeline to provision infra for module sagemaker-templates-service-catalog
  • changed ECR encryption to KMS_MANAGED
  • changed encryption for each bucket to KMS_MANAGED
  • refactor airflow-dags module to use Pydantic
  • fix inputs for bedrock-finetuning module not working
  • add retention-type argument for the bucket in the bedrock-finetuning module
  • fix broken dependencies for examples/airflow-dags
  • use add_dependency to avoid deprecation warnings from CDK
  • various typo fixes
  • various clean-ups to the SageMaker Service Catalog templates
  • fix opensearch removal policy
  • update MWAA to 2.9.2
  • update mwaa constraints
  • limit length of id in model name to prevent model name becoming too long
  • add permission for get secret value in hf_import_models template
  • add manifests/tags parameters to one-click-template
  • add integration tests for mlflow-image

v1.2.0

Added

  • added multi-acc sagemaker-mlops manifest example

Changed

  • fixed model deploy cross-account permissions
  • added bucket and model package group names as stack outputs in the sagemaker-templates module
  • refactor inputs for the following modules to use Pydantic:
    • mlflow-fargate
    • mlflow-image
    • sagemaker-studio
    • sagemaker-endpoint
    • sagemaker-templates-service-catalog
    • sagemaker-custom-kernel
    • qna-rag
  • add CDK nag to qna-rag module
  • rename seedfarmer project name to aiops
  • chore: adding some missing auto_delete attributes
  • chore: Add auto_delete to mlflow-fargate elb access logs bucket
  • updating storage/ecr module to latest pending v1.8.0 of IDF
  • enabled ECR image scan on push

v1.1.0

Added

  • added managed autoscaling config to sagemaker-endpoint module
  • added SSO support in sagemaker-studio module
  • added VPC/subnets/sg config for multi-account project template to sagemaker-templates-service-catalog module
  • added sagemaker-custom-kernel module
  • added batch inference project template to sagemaker-templates-service-catalog module
  • added EFS removal policy to mlflow-fargate module
  • added mwaa module with example dag which demonstrates the MLOps in Airflow
  • added sagemaker-model-event-bus module.
  • added sagemaker-model-package-group module.
  • added sagemaker-model-package-promote-pipeline module.
  • added sagemaker-hugging-face-endpoint module
  • added hf_import_models template to import hugging face models
  • added qna-rag module
  • added bedrock-finetuning module

Changed

  • reogranized manifests by use-case
  • add account/region props for project templates in sagemaker-templates-service-catalog module
  • fix sagemaker-templates-service-catalog model deploy role lookup issue & abalone_xgboost model registry permissions
  • update sagemaker-custom-kernel module IAM permissions
  • split xgboost_abalone and model_deploy project templates in sagemaker-templates-service-catalog module
  • add support for other AWS partitions
  • update MySQL instance to use T3 instance type
  • upgrade cdk_ecr_deployment version to fix the deprecated go1.x lambda runtime

Removed

  • remove AmazonSageMakerFullAccess from multi_account_basic template in the sagemaker-templates-service-catalog module
  • remove AmazonSageMakerFullAccess from sagemaker-endpoint module

v1.0.0

Added

  • added sagemaker-templates-service-catalog module with multi_account_basic project template
  • bump cdk & ecr deployment version to fix deprecated custom resource runtimes issue in mlflow-image
  • added sagemaker-jumpstart-fm-endpoint module
  • added RDS persistence layer to MLFlow modules
  • added mlflow-image and mlflow-fargate modules
  • added sagemaker-studio module
  • added sagemaker-endpoint module
  • added sagemaker-notebook module

Changed

  • refactor validation script to use ruff instead of black and isort

Removed