-
Notifications
You must be signed in to change notification settings - Fork 7
/
TFA_DDQN_Risk.py
368 lines (307 loc) · 16.1 KB
/
TFA_DDQN_Risk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tf_agents.drivers import dynamic_step_driver
from tf_agents.environments import suite_gym
from tf_agents.agents.dqn import dqn_agent
from tf_agents.environments import tf_py_environment
from tf_agents.eval import metric_utils
from tf_agents.metrics import tf_metrics
from tf_agents.networks import q_network, q_rnn_network
from tf_agents.policies import random_tf_policy
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.trajectories import trajectory
from tf_agents.utils import common
import random
from collections import deque
import gym
import pandas as pd
import os
import time
import pickle
import sys
from argparse import ArgumentParser
from enviroment.order_side import OrderSide
from enviroment.agent_utils.ui import UI
import gym_enviroment
from enviroment.feature_type import FeatureType
parser = ArgumentParser()
parser.add_argument("-s", help="side name", dest="side_name", default="buy")
parser.add_argument("-v", help="version", dest="version", default="paper")
parser.add_argument("-d", help="data trend", dest="trend", default="dn")
parser.add_argument("-f", help="feature type", dest="feature_type", default="order")
parser.add_argument("-m", help="model type", dest="model_type", default="MLP")
parser.add_argument("-r", help="reward type", dest="reward_type", default='profit')
parser.add_argument("--tui", help="target update iter", dest="target_update_iter", default=400)
parser.add_argument("--bf", help="buffer size", dest="buffer_size", default=100000)
parser.add_argument("--it", help="numbers of iteration", dest="iterations", default=500000)
parser.add_argument("-gn", help="gpu number", dest="gpu_number", default=1)
parser.add_argument("-b", help="beta for sensitive q learning", dest="beta", default=0.0, type=float)
parser.add_argument("-l", help="lamda for sensitive q learning", dest="lamda", default=1.0, type=float)
parser.add_argument("--ev", help="evaluation episodes", dest="evps", default=100, type=int)
parser.add_argument("-p", help="preference", dest="preference", default="[1.0,0.0]")
parser.add_argument("-fv", help="file version", dest="file_version", default="v2")
args = parser.parse_args()
side_name = args.side_name
version = args.version
trend = args.trend
feature_type = args.feature_type
model_type = args.model_type
preference = eval(args.preference)
# model type, buffer size, iterations, target_update_iter
if args.beta != 0.0:
logs_dir = './TFA_Sensitive_DDQN_{}_{}_{}_{}_{}_{}_{}_{}'.format(args.file_version, args.beta, model_type, args.buffer_size, args.iterations, args.target_update_iter, args.evps, preference, args.reward_type)
elif args.lamda != 1.0:
logs_dir = './TFA_Averse_DDQN_{}_{}_{}_{}_{}_{}_{}_{}'.format(args.file_version, args.lamda, model_type, args.buffer_size, args.iterations, args.target_update_iter, args.evps, preference, args.reward_type)
else:
logs_dir = './TFA_DDQN_{}_{}_{}_{}_{}_{}_{}_{}'.format(args.file_version, model_type, args.buffer_size, args.iterations, args.target_update_iter, args.evps, preference, args.reward_type)
print('logs_dir',logs_dir)
if not os.path.isdir(logs_dir):
os.mkdir(logs_dir)
if version == 'paper':
from enviroment.orderbook import Orderbook
else:
from enviroment.orderbook_new import Orderbook
def load_customized_gym(env_name, orderbook, side, featureType, reward_type, preference=[1.0,0.0]):
max_episode_steps = None
gym_kwargs = None
gym_kwargs = gym_kwargs if gym_kwargs else {}
gym_spec = gym.spec(env_name)
gym_env = gym_spec.make(**gym_kwargs)
gym_env.configure(orderbook, side=side, featureType=featureType, reward_type=reward_type, preference=preference)
if max_episode_steps is None and gym_spec.max_episode_steps is not None:
max_episode_steps = gym_spec.max_episode_steps
#print(max_episode_steps)
env = suite_gym.wrap_env(
gym_env,
discount=0.99,
max_episode_steps=max_episode_steps,
gym_env_wrappers=(),
env_wrappers=(),
spec_dtype_map=None)
return env
def compute_avg_return(environment, policy, num_episodes=10, policy_state=()):
total_return = 0.0
return_list = []
volatility_list = []
for _ in range(num_episodes):
time_step = environment.reset()
episode_return = 0.0
volatility_list.append(np.array(environment.get_info()[0]))
while not time_step.is_last():
action_step = policy.action(time_step,policy_state)
time_step = environment.step(action_step.action)
episode_return += time_step.reward
total_return += episode_return
return_list.append(episode_return)
return_list = np.array(return_list)
volatility_list = np.array(volatility_list)
avg_return = total_return / num_episodes
# return profit_vol, variance, profit
if args.reward_type == 'profit_vol':
profit_array = return_list*volatility_list
return avg_return.numpy()[0], np.var(return_list), np.mean(profit_array), np.var(profit_array)
elif args.reward_type == 'profit':
profit_vol_list = return_list/volatility_list
return np.mean(profit_vol_list), np.var(profit_vol_list), avg_return.numpy()[0], np.var(return_list)
def collect_step(environment, policy, buffer, policy_state=()):
time_step = environment.current_time_step()
action_step = policy.action(time_step,policy_state)
next_time_step = environment.step(action_step.action)
traj = trajectory.from_transition(time_step, action_step, next_time_step)
# Add trajectory to the replay buffer
buffer.add_batch(traj)
def collect_data(env, policy, buffer, steps):
for _ in range(steps):
collect_step(env, policy, buffer)
def moving_average(a, n=3) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
if __name__ == '__main__':
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# Restrict TensorFlow to only use the spcific GPU
try:
pass
tf.config.experimental.set_visible_devices(gpus[int(args.gpu_number)], 'GPU') # specify gpu
tf.config.experimental.set_memory_growth(gpus[int(args.gpu_number)], True) # set growth of memory
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU")
except RuntimeError as e:
# Visible devices must be set before GPUs have been initialized
print(e)
# Load orderbook
if trend == 'dn':
orderbook = Orderbook()
orderbook.loadFromEvents('data/events/ob-train.tsv')
orderbook_test = Orderbook()
orderbook_test.loadFromEvents('data/events/ob_dnTrend_test.tsv')
else:
orderbook = Orderbook()
orderbook.loadFromEvents('data/events/ob_upTrend_train.tsv')
orderbook_test = Orderbook()
orderbook_test.loadFromEvents('data/events/ob_upTrend_test.tsv')
if side_name == 'buy':
side = OrderSide.BUY
else:
side = OrderSide.SELL
if feature_type == 'order':
featureType = FeatureType.ORDERS
else:
featureType=FeatureType.TRADES
# hyperparameters
num_iterations = int(args.iterations) # @param {type:"integer"}
initial_collect_steps = 1000 # @param {type:"integer"}
collect_steps_per_iteration = 1 # @param {type:"integer"}
replay_buffer_max_length = int(args.buffer_size) # @param {type:"integer"}
target_update_period = int(args.target_update_iter) # @param {type:"integer"}
batch_size = 64 # @param {type:"integer"}
learning_rate = 1e-3 # @param {type:"number"}
log_interval = 200 # @param {type:"integer"}
eval_interval = 1000 # @param {type:"integer"}
num_eval_episodes = args.evps # @param {type:"integer"}
# Prepare the enviroment
train_py_env = load_customized_gym("enviroment-v0",orderbook, side, featureType, args.reward_type, preference=preference)
eval_py_env = load_customized_gym("enviroment-v0",orderbook, side, featureType, args.reward_type, preference=preference)
test_py_env = load_customized_gym("enviroment-v0",orderbook_test, side, featureType, args.reward_type, preference=preference)
train_env = tf_py_environment.TFPyEnvironment(train_py_env)
eval_env = tf_py_environment.TFPyEnvironment(eval_py_env)
test_env = tf_py_environment.TFPyEnvironment(test_py_env)
# build model
if 'RNN' not in args.model_type:
if args.model_type == 'CNN':
if feature_type == 'order':
conv_layer_params = ((16,(1,2),(1,2)),(16,(4,1),1),(16,(4,1),1),(16,(1,2),(1,2)),(16,(4,1),1),(16,(4,1),1),)
else:
conv_layer_params = ((16,(1,4),(1,4)),(16,(1,4),(1,4)),)
else:
conv_layer_params = None
fc_layer_params = (100,100,)
q_net = q_network.QNetwork(
train_env.observation_spec(), # input
train_env.action_spec(), # output
conv_layer_params=conv_layer_params,
fc_layer_params=fc_layer_params)
q_target_net = q_network.QNetwork(
train_env.observation_spec(), # input
train_env.action_spec(), # output
conv_layer_params=conv_layer_params,
fc_layer_params=fc_layer_params)
else:
if args.model_type == 'CNNRNN':
conv_layer_params = ((16,(1,2),(1,2)),(16,(4,1),1),(16,(4,1),1),(16,(1,2),(1,2)),(16,(4,1),1),(16,(4,1),1),)
else:
conv_layer_params = None
lstm_size=(200,) # rank of this means the depth of the LSTM model
fc_layer_params = (lstm_size[0],) #for fully connected
q_net = q_rnn_network.QRnnNetwork(
train_env.observation_spec(), # input
train_env.action_spec(), # output
input_fc_layer_params=None,
conv_layer_params=conv_layer_params,
lstm_size=lstm_size,
output_fc_layer_params=fc_layer_params)
q_target_net = q_rnn_network.QRnnNetwork(
train_env.observation_spec(), # input
train_env.action_spec(), # output
input_fc_layer_params=None,
conv_layer_params=conv_layer_params,
lstm_size=lstm_size,
output_fc_layer_params=fc_layer_params)
optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
train_step_counter = tf.Variable(0)
# bulid agents
agent = dqn_agent.DdqnAgent(
train_env.time_step_spec(),
train_env.action_spec(),
q_network=q_net,
target_q_network=q_target_net,
target_update_period = target_update_period,
optimizer=optimizer,
td_errors_loss_fn=common.element_wise_squared_loss,
train_step_counter=train_step_counter,
beta=args.beta,
lamda=args.lamda)
agent.initialize()
# bulid policy
eval_policy = agent.policy
collect_policy = agent.collect_policy
random_policy = random_tf_policy.RandomTFPolicy(train_env.time_step_spec(),
train_env.action_spec())
# bulid replay buffer
replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
data_spec=agent.collect_data_spec,
batch_size=train_env.batch_size,
max_length=replay_buffer_max_length)
# collect some data first
collect_data(train_env, random_policy, replay_buffer, steps=initial_collect_steps)
# bulid dataset
dataset = replay_buffer.as_dataset(
num_parallel_calls=3,
sample_batch_size=batch_size,
num_steps=2).prefetch(3)
iterator = iter(dataset)
# start training
# (Optional) Optimize by wrapping some of the code in a graph using TF function.
agent.train = common.function(agent.train)
# Reset the train step
agent.train_step_counter.assign(0)
# Evaluate the agent's policy once before training.
avg_profit_vol, var_profit_vol, avg_profit, var_profit = compute_avg_return(eval_env, agent.policy, num_eval_episodes, policy_state=())
var_profit_vol_list = [var_profit_vol]
avg_profit_vol_list = [avg_profit_vol]
avg_profit_list = [avg_profit]
var_profit_list = [var_profit]
test_avg_profit_vol, test_var_profit_vol, test_avg_profit, test_var_profit = compute_avg_return(test_env, agent.policy, num_eval_episodes, policy_state=())
test_var_profit_vol_list = [test_var_profit_vol]
test_avg_profit_vol_list = [test_avg_profit_vol]
test_avg_profit_list = [test_avg_profit]
test_var_profit_list = [test_var_profit]
losses = []
for _ in range(num_iterations):
# Collect a few steps using collect_policy and save to the replay buffer.
for _ in range(collect_steps_per_iteration):
collect_step(train_env, agent.collect_policy, replay_buffer, policy_state=())
# Sample a batch of data from the buffer and update the agent's network.
experience, unused_info = next(iterator)
train_loss = agent.train(experience).loss
losses.append(train_loss)
step = agent.train_step_counter.numpy()
if step % log_interval == 0:
print('step = {0}: loss = {1}'.format(step, train_loss))
if step % eval_interval == 0:
avg_profit_vol, var_profit_vol, avg_profit, var_profit = compute_avg_return(eval_env, agent.policy, num_eval_episodes, policy_state=())
print('step = {0}: Average profit_vol = {1} Var of profit_vol = {2} Average profit={3}'.format(step, avg_profit_vol, var_profit_vol, avg_profit))
avg_profit_vol_list.append(avg_profit_vol)
var_profit_vol_list.append(var_profit_vol)
avg_profit_list.append(avg_profit)
var_profit_list.append(var_profit)
if step % eval_interval == 0:
test_avg_profit_vol, test_var_profit_vol, test_avg_profit, test_var_profit = compute_avg_return(test_env, agent.policy, num_eval_episodes, policy_state=())
print('step = {0}: Average test_profit_vol = {1} Var of test_profit_vol = {2} Average test_profit={3}'.format(step, test_avg_profit_vol, test_var_profit_vol, test_avg_profit))
test_avg_profit_vol_list.append(test_avg_profit_vol)
test_var_profit_vol_list.append(test_var_profit_vol)
test_avg_profit_list.append(test_avg_profit)
test_var_profit_list.append(test_var_profit)
with open('./{}/Profit_vol_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(avg_profit_vol_list,f)
with open('./{}/Var_PV_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(var_profit_vol_list,f)
with open('./{}/Profit_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(avg_profit_list,f)
with open('./{}/Var_Profit_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(var_profit_list,f)
with open('./{}/Loss_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(losses,f)
with open('./{}/Test_Profit_vol_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(test_avg_profit_vol_list,f)
with open('./{}/Test_Var_PV_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(test_var_profit_vol_list,f)
with open('./{}/Test_Profit_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(test_avg_profit_list,f)
with open('./{}/Test_Var_Profit_{}_{}_{}_{}.pkl'.format(logs_dir,side_name,version, trend, feature_type),'wb') as f:
pickle.dump(test_var_profit_list,f)