-
Notifications
You must be signed in to change notification settings - Fork 154
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Issue with no detections but training showed model convergence #77
Comments
Without knowing your training command and output it's impossible to tell if training ran correctly. I would check the loss file in the training directory to ensure that training converged. Also, the issue here is not with add_geo_coords. Notice that you have no detections, so the failure is not in add_geo_coords, but in the lack of detections. |
This is my training command. The loss file showed that loss started around >25 and ended around .025 python /simrdwn/simrdwn/core/simrdwn.py |
Hi @Fred-Macdo, did you resolved this issue? I have exactly the same issue |
did you resolved this issue? I have exactly the same issue |
I am having an issue running test using simrdwn on my own dataset. I was using the same dataset I trained on to test so I figured it would work fine. It looks like the model is not making any detections. Did I run training incorrectly or format the data incorrectly?
I have train data in png format and tried to use tiff or png for test and was unable to get results.
Args from training log file:
Args: Namespace(BGR2RGB=0, alpha_scaling=0, append_date_string=1, batch_size=64, boxes_per_grid=5, building_csv_file='', core_dir='/simrdwn/simrdwn/core', date_string='2019_08_14_15-31-26', dpi=300, edge_buffer_test=-1000, extension_list=['.png', '.tif', '.TIF', '.TIFF', '.tiff', '.JPG', '.jpg', '.JPEG', '.jpeg'], figsize=(12, 12), framework='yolt2', gpu=0, inference_graph_path2='/raid/local/src/simrdwn/outputs/ssd/output_inference_graph/frozen_inference_graph.pb', inference_graph_path_tot='/simrdwn/results/frozen_model/frozen_inference_graph.pb', keep_test_slices=False, label_map_dict={1: 'Destroyed_Building'}, label_map_dict_rev={'Destroyed_Building': 1}, label_map_dict_rev_tot={'Destroyed_Building': 1}, label_map_dict_tot={1: 'Destroyed_Building'}, label_map_path='/simrdwn/data/train_data/class_labels_car.pbtxt', label_map_path2='', labels_log_file='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/logs/labels_list.txt', log_dir='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/logs', log_file='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/logs/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26.log', max_batches=30000, max_edge_aspect_ratio=3, min_retain_prob=0.025, mode='train', multi_band_delim='#', n_test_output_plots=10, nbands=3, nms_overlap_thresh=0.5, now=datetime.datetime(2019, 8, 14, 15, 31, 26, 722083), outname='dense_DestBuilding', overwrite_inference_graph=0, plot_line_thickness=2, plot_thresh=array([0.3]), plot_thresh_str='0.3', plot_thresh_str2='0.3', res_name='train_yolt2_dense_DestBuilding_2019_08_14_15-31-26', results_dir='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26', results_topdir='/simrdwn/results', rotate_boxes=False, save_json=1, show_labels=0, show_test_plots=0, shuffle_val_output_plot_ims=0, simrdwn_dir='/simrdwn', single_gpu_machine=0, slice_overlap=0.35, slice_sizes=array([416]), slice_sizes2=[], slice_sizes_str='416', slice_sizes_str2='0', str_delim=',', subdivisions=16, test_add_geo_coords=True, test_box_rescale_frac=1.0, test_im_compression_level=6, test_ims_list=[], test_make_legend_and_title=True, test_prep_only=0, test_presliced_list='', test_presliced_list_tot='/simrdwn/results/', test_presliced_tfrecord_path='', test_presliced_tfrecord_tot='', test_slice_sep='__', test_splitims_locs_file='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/test_splitims_input_files.txt', test_splitims_locs_file_root='test_splitims_input_files.txt', test_splitims_locs_file_root2='test_splitims_input_files2.txt', test_tfrecord_out='', testims_dir='test_images', testims_dir_tot='/simrdwn/data/test_images/test_images', tf_cfg_dir='tf/cfg', tf_cfg_train_file='tf/cfg/', tf_cfg_train_file_out='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/logs/', tf_model_output_directory='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/frozen_model', tf_plot_file='/simrdwn/simrdwn/core/tf_plot_loss.py', this_file='/simrdwn/simrdwn/core/simrdwn.py', train_data_dir='/simrdwn/data/train_data', train_input_height=416, train_input_width=416, train_model_path='', train_model_path2='', train_tf_record='/simrdwn/data/train_data/', train_val_tf_record='', use_CUDNN=1, use_GPU=1, use_opencv='1', use_tfrecords=0, val_df_path_aug='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/test_predictions_aug.csv', val_df_path_init='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/test_predictions_init.csv', val_df_path_tot='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/test_predictions_tot.csv', val_df_root_aug='test_predictions_aug.csv', val_df_root_aug2='test_predictions_aug2.csv', val_df_root_init='test_predictions_init.csv', val_df_root_init2='test_predictions_init2.csv', val_df_root_tot='test_predictions_tot.csv', val_prediction_df_refine_tot='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/test_predictions_refine_thresh=0.3', val_prediction_df_refine_tot_root_part='test_predictions_refine', weight_file='/simrdwn/yolt2/input_weights/yolov2.weights', weight_file2='', weight_file_tot='/simrdwn/yolt2/input_weights/yolov2.weights', yolov3_filters=10, yolt_cfg_dir='/simrdwn/yolt2/cfg', yolt_cfg_file='yolo.cfg', yolt_cfg_file2='yolo.cfg', yolt_cfg_file_in='/simrdwn/yolt2/cfg/yolo.cfg', yolt_cfg_file_tot='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/logs/yolo.cfg', yolt_classnum=1, yolt_dir='/simrdwn/yolt2', yolt_final_output=30, yolt_loss_file='/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/logs/yolt_loss.txt', yolt_nms_thresh=0.0, yolt_object_labels=['Destroyed_Building'], yolt_object_labels_str='Destroyed_Building', yolt_plot_file='/simrdwn/simrdwn/core/yolt_plot_loss.py', yolt_test_classes_files=['/simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26/Destroyed_Building.txt'], yolt_train_images_list_file='SR_yolt_train_list.txt', yolt_train_images_list_file_tot='/simrdwn/data/train_data/SR_yolt_train_list.txt', yolt_weight_dir='/simrdwn/yolt2/input_weights', zero_frac_thresh=0.5)
The test command is here:
python simrdwn.py --framework yolt2 --mode test --outname santarosa_test4 --label_map_path /simrdwn/data/train_data/class_labels_car.pbtxt --train_model_path /simrdwn/results/train_yolt2_dense_DestBuilding_2019_08_14_15-31-26 --testims_dir /simrdwn/results/test__SR_test_2019_08_16_18-03-24/SantaRosa_split --test_presliced_list /simrdwn/results/test__SR_test_2019_08_16_18-03-24/test_splitims_input_files.txt --weight_file yolo_final.weights --yolt_cfg_file yolo.cfg --n_test_output_plots 4 --edge_buffer_test 1 --plot_thresh_str 0.15 --batch_size 4 --min_retain_prob 0.03 --show_labels 1 --alpha_scaling 1
Traceback:
test_file: /simrdwn/results/test_yolt2_santarosa_test4_2019_08_16_20-06-27/Destroyed_Building.txt
Augmenting dataframe of initial length: 0 ...
set image path, make sure the image exists...
Time to augment dataframe of length: 0 = 0.015589714050292969 seconds
Adding geo coords...
Traceback (most recent call last):
File "simrdwn.py", line 1941, in
main()
File "simrdwn.py", line 1933, in main
execute(args, train_cmd1, test_cmd_tot, test_cmd_tot2)
File "simrdwn.py", line 1545, in execute
test_add_geo_coords=args.test_add_geo_coords)
File "simrdwn.py", line 1134, in run_test
outProj_str='epsg:3857', verbose=verbose)
File "/simrdwn/simrdwn/core/add_geo_coords.py", line 229, in add_geo_coords_to_df
df_['lon0'] = out_arr[:, 0]
IndexError: too many indices for array
The text was updated successfully, but these errors were encountered: