Skip to content

Latest commit

 

History

History
193 lines (158 loc) · 6.14 KB

quant_op.md

File metadata and controls

193 lines (158 loc) · 6.14 KB

Calculates the quantized values of one input data (Tensor) and produces one output data (Tensor). Additionally, takes three floats as input, which define the scale, zero-point and bit-width of the quantization. The attributes narrow and signed define how the bits of the quantization are interpreted, while the attribute rounding_mode defines how quantized values are rounded.

Note: This operator does not work for binary or bipolar quantization, for this purpose the simpler BipolarQuant node exists.

Version

This operator is not part of the ONNX standard and is not currently versioned.

Attributes

signed : int (default is 1)
Defines if the quantization includes a signed bit. E.g. at 8b unsigned=[0, 255] vs signed=[-128, 127].
narrow : int (default is 0)
Defines if the value range should be interpreted as narrow, when signed=1. E.g. at 8b regular=[-128, 127] vs narrow=[-127, 127].
rounding_mode : string (default is "ROUND")
Defines how rounding should be applied during quantization. Currently available modes are: "ROUND", "CEIL" and "FLOOR". Here "ROUND" implies a round-to-even operation. Lowercase variants for the rounding mode string are also supported: "round", "ceil", "floor".

Inputs

X (differentiable) : tensor(float32)
input tensor to quantize
scale : float32
The scale factor
zeropt : float32
The zero-point
bitwidth : int32
The number of bits used by the quantization

Outputs

Y (differentiable) : tensor(float32)
Output tensor

Examples

Quant
from onnx import helper
import numpy as np

# Define node settings and input
x = np.random.randn(100).astype(np.float32)*10.
scale = np.array(1.)
zeropt = np.array(0.)
bitwidth = np.array(4)
signed = 1
narrow = 0
rounding_mode = "ROUND"

# Create node
node = helper.make_node(
    'Quant',
    domain='finn.custom_op.general',
    inputs=['x', 'scale', 'zeropt', 'bitwidth'],
    outputs=['y'],
    narrow=narrow,
    signed=signed,
    rounding_mode=rounding_mode,
)

# Execute the same settings with the reference implementation (quant)
# See the sample implementation for more details on quant.
output_ref = quant(x, scale, zeropt, bitwidth, signed, narrow, rounding_mode)

# Execute node and compare
expect(node, inputs=[x, scale, zeropt, bitwidth], outputs=[output_ref], name='test_quant')

Sample Implementation

Quant
# SPDX-License-Identifier: Apache-2.0

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import numpy as np

def quant(inp_tensor, scale, zeropt, bitwidth, signed, narrow, rounding_mode):
    # Port of IntQuant class from Brevitas: https://bit.ly/2S6qvZJ
    # Scaling
    y_int = inp_tensor / scale
    y_int = y_int + zeropt
    # Clamping
    min_int_val = min_int(signed, narrow, bitwidth)
    max_int_val = max_int(signed, narrow, bitwidth)
    y_int = np.where(y_int > max_int_val, max_int_val.astype(y_int.dtype), y_int)
    y_int = np.where(y_int < min_int_val, min_int_val.astype(y_int.dtype), y_int)
    # Rounding
    rounding_fx = resolve_rounding_mode(rounding_mode)
    y_int = rounding_fx(y_int)

    # Re-scaling
    out_tensor = y_int - zeropt
    out_tensor = out_tensor * scale

    return out_tensor

def min_int(signed: bool, narrow_range: bool, bit_width: int) -> int:
    """Compute the minimum integer representable by a given number of bits.
    Args:
        signed (bool): Indicates whether the represented integer is signed or not.
        narrow_range (bool): Indicates whether to narrow the minimum value
        represented by 1.
        bit_width (int): Number of bits available for the representation.
    Returns:
        int: Maximum unsigned integer that can be represented according to
        the input arguments.
    Examples:
        >>> min_int(signed=True, narrow_range=True, bit_width=8)
        int(-127)
        >>> min_int(signed=False, narrow_range=True, bit_width=8)
        int(0)
        >>> min_int(signed=True, narrow_range=False, bit_width=8)
        int(-128)
        >>> min_int(signed=False, narrow_range=False, bit_width=8)
        int(0)
    """
    if signed and narrow_range:
        value = -(2 ** (bit_width - 1)) + 1
    elif signed and not narrow_range:
        value = -(2 ** (bit_width - 1))
    else:
        value = 0 * bit_width
    return value


def max_int(signed: bool, narrow_range: bool, bit_width: int) -> int:
    """Compute the maximum integer representable by a given number of bits.
    Args:
        signed (bool): Indicates whether the represented integer is signed or not.
        narrow_range (bool): Indicates whether to narrow the maximum unsigned value
        represented by 1.
        bit_width (int): Number of bits available for the representation.
    Returns:
        Tensor: Maximum integer that can be represented according to
        the input arguments.
    Examples:
        >>> max_int(signed=True, narrow_range=True, bit_width=8)
        int(127)
        >>> max_int(signed=False, narrow_range=True, bit_width=8)
        int(254)
        >>> max_int(signed=True, narrow_range=False, bit_width=8)
        int(127)
        >>> max_int(signed=False, narrow_range=False, bit_width=8)
        int(255)
    """
    if not signed and not narrow_range:
        value = (2 ** bit_width) - 1
    elif not signed and narrow_range:
        value = (2 ** bit_width) - 2
    else:
        value = (2 ** (bit_width - 1)) - 1
    return value

def resolve_rounding_mode(mode_string):
    """Resolve the rounding mode string of Quant and Trunc ops
    to the corresponding numpy functions."""
    if mode_string == "ROUND":
        return np.round
    elif mode_string == "CEIL":
        return np.ceil
    elif mode_string == "FLOOR":
        return np.floor
    else:
        raise ValueError(f"Could not resolve rounding mode called: {mode_string}")