forked from adrianjav/heterogeneous_vaes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
221 lines (162 loc) · 7.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import yaml
import os
import sys
import argparse
import subprocess
import datetime
import torch
import src.plotting as plt
import src.feature_scaling as scaling
from src.datasets import InductiveDataModule
from src.probabilistc_model import ProbabilisticModel
from src.miscelanea import test_mie_ll
from src.models import VAE, IWAE, DREG, HIVAE
import pytorch_lightning as pl
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning import callbacks as pl_callbacks
def validate(args) -> None:
args.timestamp = datetime.datetime.today().strftime('%Y-%m-%d-%H:%M:%S')
if args.dataset[-1] == '/':
args.dataset = args.dataset[:-1]
assert args.model != 'iwae' or args.samples > 0
dataset = args.dataset
if dataset[-1] == '/':
dataset = dataset[:-1]
args.dataset = args.root + '/' + args.dataset
args.root = f'{args.root}/results/{args.model}/{dataset}/' \
f'dropout_{args.dropout}/' \
f'Missing{args.miss_perc}_{args.miss_suffix}'
# Read types of the dataset
arguments = ['./read_types.sh', f'{args.dataset}/data_types.csv']
proc = subprocess.Popen(arguments, stdout=subprocess.PIPE)
out = eval(proc.communicate()[0].decode('ascii'))
args.probabilistic_model = out['probabilistic model']
args.categoricals = out['categoricals']
if args.max_epochs is None:
args.max_epochs = {
'Wine': 2000, 'letter': 400, 'spam': 2000,
'Adult': 400, 'defaultCredit': 400, 'Breast': 3000,
'labour': 400, 'HI': 400, 'diamonds': 400, 'CPS1988': 400,
'rwm5yr': 400, 'movies': 400, 'bank': 400
}[args.dataset[args.dataset.rindex('/')+1:]]
def print_data_info(prob_model, data):
print()
print('#' * 20)
print('Original data')
x = data
for i, dist_i in enumerate(prob_model):
print(f'range of [{i}={dist_i}]: {x[:, i].min()} {x[:, i].max()}')
print()
print(f'weights = {[x.item() for x in prob_model.weights]}')
print()
print('Scaled data')
x = prob_model >> data
for i, dist_i in enumerate(prob_model):
print(f'range of [{i}={dist_i}]: {x[:, i].min()} {x[:, i].max()}')
print('#' * 20)
print()
@torch.no_grad()
def test(model, prob_model, loader, device):
model.eval()
mask_bc = loader.dataset[:][1].to(device)
generated_data = model([loader.dataset[:][0].to(device), mask_bc, None], mode=False).cpu()
data = loader.dataset[:][0]
plt.plot_together([data, generated_data], prob_model, title='', legend=['original', 'generated'],
path=f'{args.root}/marginal')
def main(hparams):
validate(hparams)
pl.seed_everything(hparams.seed)
os.makedirs(hparams.root, exist_ok=True)
if hparams.to_file:
sys.stdout = open(f'{hparams.root}/stdout.txt', 'w')
sys.stderr = open(f'{hparams.root}/stderr.txt', 'w')
prob_model = ProbabilisticModel(hparams.probabilistic_model)
print('Likelihoods:', [str(d) for d in prob_model])
if hparams.latent_size is None:
if hparams.latent_perc is not None:
hparams.latent_size = max(1, int(len(prob_model.gathered) * (hparams.latent_perc / 100) + 0.5))
else:
hparams.latent_size = max(1, int(len(prob_model.gathered) * 0.75 + 0.5))
if not hasattr(hparams, 'size_s') or hparams.size_s is None:
hparams.size_s = hparams.latent_size
if not hasattr(hparams, 'size_z') or hparams.size_z is None:
hparams.size_z = hparams.latent_size
if not hasattr(hparams, 'size_y') or hparams.size_y is None:
hparams.size_y = hparams.hidden_size
print('Dataset:', hparams.dataset)
preprocess_fn = [scaling.standardize(prob_model, 'continuous')]
dm = InductiveDataModule(hparams.dataset, hparams.miss_perc, hparams.miss_suffix, hparams.categoricals, prob_model,
hparams.batch_size, preprocess_fn)
dm.prepare_data()
dm.setup(stage='fit')
train_loader = dm.train_dataloader()
test_loader = dm.val_dataloader()
print_data_info(prob_model, train_loader.dataset[:][0])
with open(f'{hparams.root}/args.yml', 'w') as outfile:
yaml.dump(hparams, outfile)
# Crete model and trainer
model = {
'vae': VAE, 'iwae': IWAE, 'dreg': DREG, 'hivae': HIVAE
}[hparams.model](prob_model, hparams)
tb_logger = None
if hparams.tensorboard:
tb_logger = pl_loggers.TensorBoardLogger(f'{hparams.root}/tb_logs')
timer = pl_callbacks.Timer()
checkpoint_callback = pl_callbacks.ModelCheckpoint(dirpath=hparams.root, filename='best',
monitor='validation/re', save_last=True)
trainer = pl.Trainer(
max_epochs=hparams.max_epochs, logger=tb_logger, default_root_dir=hparams.root,
callbacks=[timer, checkpoint_callback]
)
# Train
trainer.fit(model, dm)
seconds = timer.time_elapsed('train')
print(f'Training finished in {int(seconds)}s ({datetime.timedelta(seconds=seconds)}).')
# Evaluate
prob_model = prob_model.to('cpu')
print('Loading and evaluating best model.')
model = type(model).load_from_checkpoint(trainer.checkpoint_callback.best_model_path, prob_model=prob_model)
test(model, prob_model, test_loader, hparams.device)
test_mie_ll(model, prob_model, train_loader.dataset, hparams.device, title='Train')
test_mie_ll(model, prob_model, test_loader.dataset, hparams.device)
if __name__ == '__main__':
torch.set_default_dtype(torch.float32)
# Configuration
parser = argparse.ArgumentParser('')
# General
parser.add_argument('-seed', type=int, default=None)
parser.add_argument('-device', type=str, default='cpu', choices=['cpu', 'cuda'])
parser.add_argument('-root', type=str, default='.', help='Output folder (default: \'%(default)s)\'')
parser.add_argument('-to-file', action='store_true', help='Redirect output to \'stdout.txt\'')
parser.add_argument('-model', type=str, required=True, choices=['vae', 'iwae', 'hivae', 'dreg'])
# Tracking
parser.add_argument('-tensorboard', action='store_true', help='Activates tensorboard logs.')
# Dataset
group = parser.add_argument_group('dataset')
group.add_argument('-batch-size', type=int, default=1024, help='Batch size (%(default)s)')
group.add_argument('-dataset', type=str, required=True, help='Dataset to use (path to folder)')
group.add_argument('-miss-perc', type=int, required=True, help='Missing percentage')
group.add_argument('-miss-suffix', type=int, required=True, help='Suffix of the missing percentage file')
# Training
group = parser.add_argument_group('training')
group.add_argument('-learning-rate', type=float, default=0.001, help='Learning rate')
group.add_argument('-decay', type=float, default=1., help='Learning rate\'s exponential decay rate.') # 0.999999
group.add_argument('-max-epochs', type=int, default=None, help='Number of epochs.')
# VAE
group = parser.add_argument_group('vae/iwae')
group.add_argument('-latent-size', type=int, default=None)
group.add_argument('-latent-perc', type=int, default=None)
group.add_argument('-dropout', type=float, default=0.1, help='Dropout percentage on the input layer')
group.add_argument('-hidden-size', type=int, default=200, help='Size of the hidden layers')
# IWAE
group = parser.add_argument_group('iwae')
group.add_argument('-use-dreg', action='store_true', help='Whether to use the doubly rep. estimator')
group.add_argument('-samples', type=int, default=None, help='Number of importance samples')
# HI-VAE
group = parser.add_argument_group('hivae')
group.add_argument('-size-z', type=int, default=None)
group.add_argument('-size-s', type=int, default=None)
group.add_argument('-size-y', type=int, default=None)
args = parser.parse_args()
main(args)
sys.exit(0)