forked from ZFTurbo/Music-Source-Separation-Training
-
Notifications
You must be signed in to change notification settings - Fork 1
/
valid.py
256 lines (220 loc) · 9.55 KB
/
valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
import argparse
import time
from tqdm import tqdm
import sys
import os
import glob
import copy
import torch
import soundfile as sf
import numpy as np
import torch.nn as nn
import multiprocessing
import warnings
warnings.filterwarnings("ignore")
from utils import demix_track, demix_track_demucs, sdr, get_model_from_config
def proc_list_of_files(
mixture_paths,
model,
args,
config,
device,
verbose=False,
is_tqdm=True
):
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
if args.store_dir != "":
if not os.path.isdir(args.store_dir):
os.mkdir(args.store_dir)
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
if is_tqdm:
mixture_paths = tqdm(mixture_paths)
for path in mixture_paths:
mix, sr = sf.read(path)
folder = os.path.dirname(path)
folder_name = os.path.abspath(folder)
if verbose:
print('Song: {}'.format(folder_name))
mixture = torch.tensor(mix.T, dtype=torch.float32)
if args.model_type == 'htdemucs':
res = demix_track_demucs(config, model, mixture, device)
else:
res = demix_track(config, model, mixture, device)
if 1:
pbar_dict = {}
for instr in instruments:
if instr != 'other' or config.training.other_fix is False:
try:
track, sr1 = sf.read(folder + '/{}.wav'.format(instr))
except Exception as e:
# print('No data for stem: {}. Skip!'.format(instr))
continue
else:
# other is actually instrumental
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals'))
track = mix - track
if args.store_dir != "":
sf.write("{}/{}_{}.wav".format(args.store_dir, os.path.basename(folder), instr), res[instr].T, sr,
subtype='FLOAT')
references = np.expand_dims(track, axis=0)
estimates = np.expand_dims(res[instr].T, axis=0)
sdr_val = sdr(references, estimates)[0]
if verbose:
print(instr, res[instr].shape, sdr_val)
all_sdr[instr].append(sdr_val)
pbar_dict['sdr_{}'.format(instr)] = sdr_val
try:
mixture_paths.set_postfix(pbar_dict)
except Exception as e:
pass
return all_sdr
def valid(model, args, config, device, verbose=False):
start_time = time.time()
model.eval().to(device)
all_mixtures_path = glob.glob(args.valid_path + '/*/mixture.wav')
print('Total mixtures: {}'.format(len(all_mixtures_path)))
print('Overlap: {} Batch size: {}'.format(config.inference.num_overlap, config.inference.batch_size))
all_sdr = proc_list_of_files(all_mixtures_path, model, args, config, device, verbose, not verbose)
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
if args.store_dir != "":
out = open(args.store_dir + '/results.txt', 'w')
out.write(str(args) + "\n")
print("Num overlap: {}".format(config.inference.num_overlap))
sdr_avg = 0.0
for instr in instruments:
sdr_val = np.array(all_sdr[instr]).mean()
print("Instr SDR {}: {:.4f}".format(instr, sdr_val))
if args.store_dir != "":
out.write("Instr SDR {}: {:.4f}".format(instr, sdr_val) + "\n")
sdr_avg += sdr_val
sdr_avg /= len(instruments)
if len(instruments) > 1:
print('SDR Avg: {:.4f}'.format(sdr_avg))
if args.store_dir != "":
out.write('SDR Avg: {:.4f}'.format(sdr_avg) + "\n")
print("Elapsed time: {:.2f} sec".format(time.time() - start_time))
if args.store_dir != "":
out.write("Elapsed time: {:.2f} sec".format(time.time() - start_time) + "\n")
out.close()
return sdr_avg
def valid_mp(proc_id, queue, all_mixtures_path, model, args, config, device, return_dict):
m1 = model.eval().to(device)
if proc_id == 0:
progress_bar = tqdm(total=len(all_mixtures_path))
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
while True:
current_step, path = queue.get()
if path is None: # check for sentinel value
break
sdr_single = proc_list_of_files([path], m1, args, config, device, False, False)
pbar_dict = {}
for instr in config.training.instruments:
all_sdr[instr] += sdr_single[instr]
if len(sdr_single[instr]) > 0:
pbar_dict['sdr_{}'.format(instr)] = "{:.4f}".format(sdr_single[instr][0])
if proc_id == 0:
progress_bar.update(current_step - progress_bar.n)
progress_bar.set_postfix(pbar_dict)
# print(f"Inference on process {proc_id}", all_sdr)
return_dict[proc_id] = all_sdr
return
def valid_multi_gpu(model, args, config, device_ids, verbose=False):
start_time = time.time()
all_mixtures_path = glob.glob(args.valid_path + '/*/mixture.wav')
print('Total mixtures: {}'.format(len(all_mixtures_path)))
print('Overlap: {} Batch size: {}'.format(config.inference.num_overlap, config.inference.batch_size))
model = model.to('cpu')
queue = torch.multiprocessing.Queue()
processes = []
return_dict = torch.multiprocessing.Manager().dict()
for i, device in enumerate(device_ids):
if torch.cuda.is_available():
device = 'cuda:{}'.format(device)
else:
device = 'cpu'
p = torch.multiprocessing.Process(target=valid_mp, args=(i, queue, all_mixtures_path, model, args, config, device, return_dict))
p.start()
processes.append(p)
for i, path in enumerate(all_mixtures_path):
queue.put((i, path))
for _ in range(len(device_ids)):
queue.put((None, None)) # sentinel value to signal subprocesses to exit
for p in processes:
p.join() # wait for all subprocesses to finish
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
for i in range(len(device_ids)):
all_sdr[instr] += return_dict[i][instr]
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
if args.store_dir != "":
out = open(args.store_dir + '/results.txt', 'w')
out.write(str(args) + "\n")
print("Num overlap: {}".format(config.inference.num_overlap))
sdr_avg = 0.0
for instr in instruments:
sdr_val = np.array(all_sdr[instr]).mean()
print("Instr SDR {}: {:.4f}".format(instr, sdr_val))
if args.store_dir != "":
out.write("Instr SDR {}: {:.4f}".format(instr, sdr_val) + "\n")
sdr_avg += sdr_val
sdr_avg /= len(instruments)
if len(instruments) > 1:
print('SDR Avg: {:.4f}'.format(sdr_avg))
if args.store_dir != "":
out.write('SDR Avg: {:.4f}'.format(sdr_avg) + "\n")
print("Elapsed time: {:.2f} sec".format(time.time() - start_time))
if args.store_dir != "":
out.write("Elapsed time: {:.2f} sec".format(time.time() - start_time) + "\n")
out.close()
return sdr_avg
def check_validation(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit")
parser.add_argument("--config_path", type=str, help="path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights")
parser.add_argument("--valid_path", type=str, help="validate path")
parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file")
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids')
parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--pin_memory", type=bool, default=False, help="dataloader pin_memory")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
torch.backends.cudnn.benchmark = True
torch.multiprocessing.set_start_method('spawn')
model, config = get_model_from_config(args.model_type, args.config_path)
if args.start_check_point != '':
print('Start from checkpoint: {}'.format(args.start_check_point))
state_dict = torch.load(args.start_check_point)
if args.model_type == 'htdemucs':
# Fix for htdemucs pretrained models
if 'state' in state_dict:
state_dict = state_dict['state']
model.load_state_dict(state_dict)
print("Instruments: {}".format(config.training.instruments))
device_ids = args.device_ids
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = 'cpu'
print('CUDA is not available. Run validation on CPU. It will be very slow...')
if torch.cuda.is_available() and len(device_ids) > 1:
valid_multi_gpu(model, args, config, device_ids, verbose=False)
else:
valid(model, args, config, device, verbose=False)
if __name__ == "__main__":
check_validation(None)