forked from ZFTurbo/Music-Source-Separation-Training
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
517 lines (455 loc) · 19.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# coding: utf-8
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
__version__ = '1.0.3'
import random
import argparse
import time
import copy
from tqdm import tqdm
import sys
import os
import glob
import torch
import soundfile as sf
import numpy as np
import auraloss
import torch.nn as nn
from torch.optim import Adam, AdamW, SGD, RAdam
from torch.utils.data import DataLoader
from torch.cuda.amp.grad_scaler import GradScaler
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch.nn.functional as F
from dataset import MSSDataset
from utils import demix_track, demix_track_demucs, sdr, get_model_from_config
import warnings
warnings.filterwarnings("ignore")
def masked_loss(y_, y, q, coarse=True):
# shape = [num_sources, batch_size, num_channels, chunk_size]
loss = torch.nn.MSELoss(reduction='none')(y_, y).transpose(0, 1)
if coarse:
loss = torch.mean(loss, dim=(-1, -2))
loss = loss.reshape(loss.shape[0], -1)
L = loss.detach()
quantile = torch.quantile(L, q, interpolation='linear', dim=1, keepdim=True)
mask = L < quantile
return (loss * mask).mean()
def manual_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if multi-GPU
torch.backends.cudnn.deterministic = True
os.environ["PYTHONHASHSEED"] = str(seed)
def load_not_compatible_weights(model, weights, verbose=False):
new_model = model.state_dict()
old_model = torch.load(weights)
if 'state' in old_model:
# Fix for htdemucs weights loading
old_model = old_model['state']
for el in new_model:
if el in old_model:
if verbose:
print('Match found for {}!'.format(el))
if new_model[el].shape == old_model[el].shape:
if verbose:
print('Action: Just copy weights!')
new_model[el] = old_model[el]
else:
if len(new_model[el].shape) != len(old_model[el].shape):
if verbose:
print('Action: Different dimension! Too lazy to write the code... Skip it')
else:
if verbose:
print('Shape is different: {} != {}'.format(tuple(new_model[el].shape), tuple(old_model[el].shape)))
ln = len(new_model[el].shape)
max_shape = []
slices_old = []
slices_new = []
for i in range(ln):
max_shape.append(max(new_model[el].shape[i], old_model[el].shape[i]))
slices_old.append(slice(0, old_model[el].shape[i]))
slices_new.append(slice(0, new_model[el].shape[i]))
# print(max_shape)
# print(slices_old, slices_new)
slices_old = tuple(slices_old)
slices_new = tuple(slices_new)
max_matrix = np.zeros(max_shape, dtype=np.float32)
for i in range(ln):
max_matrix[slices_old] = old_model[el].cpu().numpy()
max_matrix = torch.from_numpy(max_matrix)
new_model[el] = max_matrix[slices_new]
else:
if verbose:
print('Match not found for {}!'.format(el))
model.load_state_dict(
new_model
)
def valid(model, args, config, device, verbose=False):
# For multiGPU extract single model
if len(args.device_ids) > 1:
model = model.module
model.eval()
all_mixtures_path = []
for valid_path in args.valid_path:
part = sorted(glob.glob(valid_path + '/*/mixture.wav'))
if len(part) == 0:
print('No validation data found in: {}'.format(valid_path))
all_mixtures_path += part
if verbose:
print('Total mixtures: {}'.format(len(all_mixtures_path)))
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
if not verbose:
all_mixtures_path = tqdm(all_mixtures_path)
pbar_dict = {}
for path in all_mixtures_path:
mix, sr = sf.read(path)
folder = os.path.dirname(path)
if verbose:
print('Song: {}'.format(os.path.basename(folder)))
mixture = torch.tensor(mix.T, dtype=torch.float32)
if args.model_type == 'htdemucs':
res = demix_track_demucs(config, model, mixture, device)
else:
res = demix_track(config, model, mixture, device)
for instr in instruments:
if instr != 'other' or config.training.other_fix is False:
track, sr1 = sf.read(folder + '/{}.wav'.format(instr))
else:
# other is actually instrumental
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals'))
track = mix - track
# sf.write("{}.wav".format(instr), res[instr].T, sr, subtype='FLOAT')
references = np.expand_dims(track, axis=0)
estimates = np.expand_dims(res[instr].T, axis=0)
sdr_val = sdr(references, estimates)[0]
if verbose:
print(instr, res[instr].shape, sdr_val)
all_sdr[instr].append(sdr_val)
pbar_dict['sdr_{}'.format(instr)] = sdr_val
if not verbose:
all_mixtures_path.set_postfix(pbar_dict)
sdr_avg = 0.0
for instr in instruments:
sdr_val = np.array(all_sdr[instr]).mean()
print("Instr SDR {}: {:.4f}".format(instr, sdr_val))
sdr_avg += sdr_val
sdr_avg /= len(instruments)
if len(instruments) > 1:
print('SDR Avg: {:.4f}'.format(sdr_avg))
return sdr_avg
def proc_list_of_files(
mixture_paths,
model,
args,
config,
device,
verbose=False,
):
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
for path in mixture_paths:
mix, sr = sf.read(path)
folder = os.path.dirname(path)
folder_name = os.path.abspath(folder)
if verbose:
print('Song: {}'.format(folder_name))
mixture = torch.tensor(mix.T, dtype=torch.float32)
if args.model_type == 'htdemucs':
res = demix_track_demucs(config, model, mixture, device)
else:
res = demix_track(config, model, mixture, device)
if 1:
pbar_dict = {}
for instr in instruments:
if instr != 'other' or config.training.other_fix is False:
try:
track, sr1 = sf.read(folder + '/{}.wav'.format(instr))
except Exception as e:
# print('No data for stem: {}. Skip!'.format(instr))
continue
else:
# other is actually instrumental
track, sr1 = sf.read(folder + '/{}.wav'.format('vocals'))
track = mix - track
references = np.expand_dims(track, axis=0)
estimates = np.expand_dims(res[instr].T, axis=0)
sdr_val = sdr(references, estimates)[0]
if verbose:
print(instr, res[instr].shape, sdr_val)
all_sdr[instr].append(sdr_val)
pbar_dict['sdr_{}'.format(instr)] = sdr_val
try:
mixture_paths.set_postfix(pbar_dict)
except Exception as e:
pass
return all_sdr
def valid_mp(proc_id, queue, all_mixtures_path, model, args, config, device, return_dict):
m1 = model
# m1 = copy.deepcopy(m1)
m1 = m1.eval().to(device)
if proc_id == 0:
progress_bar = tqdm(total=len(all_mixtures_path))
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
while True:
current_step, path = queue.get()
if path is None: # check for sentinel value
break
sdr_single = proc_list_of_files([path], m1, args, config, device, False)
pbar_dict = {}
for instr in config.training.instruments:
all_sdr[instr] += sdr_single[instr]
if len(sdr_single[instr]) > 0:
pbar_dict['sdr_{}'.format(instr)] = "{:.4f}".format(sdr_single[instr][0])
if proc_id == 0:
progress_bar.update(current_step - progress_bar.n)
progress_bar.set_postfix(pbar_dict)
# print(f"Inference on process {proc_id}", all_sdr)
return_dict[proc_id] = all_sdr
return
def valid_multi_gpu(model, args, config, verbose=False):
device_ids = args.device_ids
model = model.to('cpu')
# For multiGPU extract single model
if len(device_ids) > 1:
model = model.module
all_mixtures_path = []
for valid_path in args.valid_path:
part = sorted(glob.glob(valid_path + '/*/mixture.wav'))
if len(part) == 0:
print('No validation data found in: {}'.format(valid_path))
all_mixtures_path += part
model = model.to('cpu')
torch.cuda.empty_cache()
queue = torch.multiprocessing.Queue()
processes = []
return_dict = torch.multiprocessing.Manager().dict()
for i, device in enumerate(device_ids):
if torch.cuda.is_available():
device = 'cuda:{}'.format(device)
else:
device = 'cpu'
p = torch.multiprocessing.Process(target=valid_mp, args=(i, queue, all_mixtures_path, model, args, config, device, return_dict))
p.start()
processes.append(p)
for i, path in enumerate(all_mixtures_path):
queue.put((i, path))
for _ in range(len(device_ids)):
queue.put((None, None)) # sentinel value to signal subprocesses to exit
for p in processes:
p.join() # wait for all subprocesses to finish
all_sdr = dict()
for instr in config.training.instruments:
all_sdr[instr] = []
for i in range(len(device_ids)):
all_sdr[instr] += return_dict[i][instr]
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
sdr_avg = 0.0
for instr in instruments:
sdr_val = np.array(all_sdr[instr]).mean()
print("Instr SDR {}: {:.4f}".format(instr, sdr_val))
sdr_avg += sdr_val
sdr_avg /= len(instruments)
if len(instruments) > 1:
print('SDR Avg: {:.4f}'.format(sdr_avg))
return sdr_avg
def train_model(args):
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default='mdx23c', help="One of mdx23c, htdemucs, segm_models, mel_band_roformer, bs_roformer, swin_upernet, bandit")
parser.add_argument("--config_path", type=str, help="path to config file")
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to start training")
parser.add_argument("--results_path", type=str, help="path to folder where results will be stored (weights, metadata)")
parser.add_argument("--data_path", nargs="+", type=str, help="Dataset data paths. You can provide several folders.")
parser.add_argument("--dataset_type", type=int, default=1, help="Dataset type. Must be one of: 1, 2, 3 or 4. Details here: https://github.com/ZFTurbo/Music-Source-Separation-Training/blob/main/docs/dataset_types.md")
parser.add_argument("--valid_path", nargs="+", type=str, help="validation data paths. You can provide several folders.")
parser.add_argument("--num_workers", type=int, default=0, help="dataloader num_workers")
parser.add_argument("--pin_memory", type=bool, default=False, help="dataloader pin_memory")
parser.add_argument("--seed", type=int, default=0, help="random seed")
parser.add_argument("--device_ids", nargs='+', type=int, default=[0], help='list of gpu ids')
parser.add_argument("--use_multistft_loss", action='store_true', help="Use MultiSTFT Loss (from auraloss package)")
parser.add_argument("--use_mse_loss", action='store_true', help="Use default MSE loss")
parser.add_argument("--use_l1_loss", action='store_true', help="Use L1 loss")
if args is None:
args = parser.parse_args()
else:
args = parser.parse_args(args)
manual_seed(args.seed + int(time.time()))
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False # Fix possible slow down with dilation convolutions
torch.multiprocessing.set_start_method('spawn')
model, config = get_model_from_config(args.model_type, args.config_path)
print("Instruments: {}".format(config.training.instruments))
if not os.path.isdir(args.results_path):
os.mkdir(args.results_path)
use_amp = True
try:
use_amp = config.training.use_amp
except:
pass
device_ids = args.device_ids
batch_size = config.training.batch_size * len(device_ids)
trainset = MSSDataset(
config,
args.data_path,
batch_size=batch_size,
metadata_path=os.path.join(args.results_path, 'metadata_{}.pkl'.format(args.dataset_type)),
dataset_type=args.dataset_type,
)
train_loader = DataLoader(
trainset,
batch_size=batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=args.pin_memory
)
if args.start_check_point != '':
print('Start from checkpoint: {}'.format(args.start_check_point))
if 1:
load_not_compatible_weights(model, args.start_check_point, verbose=False)
else:
model.load_state_dict(
torch.load(args.start_check_point)
)
if torch.cuda.is_available():
if len(device_ids) <= 1:
print('Use single GPU: {}'.format(device_ids))
device = torch.device(f'cuda:{device_ids[0]}')
model = model.to(device)
else:
print('Use multi GPU: {}'.format(device_ids))
device = torch.device(f'cuda:{device_ids[0]}')
model = nn.DataParallel(model, device_ids=device_ids).to(device)
else:
device = 'cpu'
print('CUDA is not avilable. Run training on CPU. It will be very slow...')
model = model.to(device)
if 0:
valid_multi_gpu(model, args, config, verbose=True)
if config.training.optimizer == 'adam':
optimizer = Adam(model.parameters(), lr=config.training.lr)
elif config.training.optimizer == 'adamw':
optimizer = AdamW(model.parameters(), lr=config.training.lr)
elif config.training.optimizer == 'radam':
optimizer = RAdam(model.parameters(), lr=config.training.lr)
elif config.training.optimizer == 'sgd':
print('Use SGD optimizer')
optimizer = SGD(model.parameters(), lr=config.training.lr, momentum=0.999)
else:
print('Unknown optimizer: {}'.format(config.training.optimizer))
exit()
gradient_accumulation_steps = 1
try:
gradient_accumulation_steps = int(config.training.gradient_accumulation_steps)
except:
pass
print("Patience: {} Reduce factor: {} Batch size: {} Grad accum steps: {} Effective batch size: {}".format(
config.training.patience,
config.training.reduce_factor,
batch_size,
gradient_accumulation_steps,
batch_size * gradient_accumulation_steps,
))
# Reduce LR if no SDR improvements for several epochs
scheduler = ReduceLROnPlateau(optimizer, 'max', patience=config.training.patience, factor=config.training.reduce_factor)
if args.use_multistft_loss:
try:
loss_options = dict(config.loss_multistft)
except:
loss_options = dict()
print('Loss options: {}'.format(loss_options))
loss_multistft = auraloss.freq.MultiResolutionSTFTLoss(
**loss_options
)
scaler = GradScaler()
print('Train for: {}'.format(config.training.num_epochs))
best_sdr = -100
for epoch in range(config.training.num_epochs):
model.train().to(device)
print('Train epoch: {} Learning rate: {}'.format(epoch, optimizer.param_groups[0]['lr']))
loss_val = 0.
total = 0
# total_loss = None
pbar = tqdm(train_loader)
for i, (batch, mixes) in enumerate(pbar):
y = batch.to(device)
x = mixes.to(device) # mixture
with torch.cuda.amp.autocast(enabled=use_amp):
if args.model_type in ['mel_band_roformer', 'bs_roformer']:
# loss is computed in forward pass
loss = model(x, y)
if type(device_ids) != int:
# If it's multiple GPUs sum partial loss
loss = loss.mean()
else:
y_ = model(x)
if args.use_multistft_loss:
y1_ = torch.reshape(y_, (y_.shape[0], y_.shape[1] * y_.shape[2], y_.shape[3]))
y1 = torch.reshape(y, (y.shape[0], y.shape[1] * y.shape[2], y.shape[3]))
loss = loss_multistft(y1_, y1)
# We can use many losses at the same time
if args.use_mse_loss:
loss += 1000 * nn.MSELoss()(y1_, y1)
if args.use_l1_loss:
loss += 1000 * F.l1_loss(y1_, y1)
elif args.use_mse_loss:
loss = nn.MSELoss()(y_, y)
elif args.use_l1_loss:
loss = F.l1_loss(y_, y)
else:
loss = masked_loss(
y_,
y,
q=config.training.q,
coarse=config.training.coarse_loss_clip
)
loss /= gradient_accumulation_steps
scaler.scale(loss).backward()
if config.training.grad_clip:
nn.utils.clip_grad_norm_(model.parameters(), config.training.grad_clip)
if ((i + 1) % gradient_accumulation_steps == 0) or (i == len(train_loader) - 1):
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
li = loss.item() * gradient_accumulation_steps
loss_val += li
total += 1
pbar.set_postfix({'loss': 100 * li, 'avg_loss': 100 * loss_val / (i + 1)})
loss.detach()
print('Training loss: {:.6f}'.format(loss_val / total))
# Save last
store_path = args.results_path + '/last_{}.ckpt'.format(args.model_type)
state_dict = model.state_dict() if len(device_ids) <= 1 else model.module.state_dict()
torch.save(
state_dict,
store_path
)
# if you have problem with multiproc validation change 0 to 1
if 0:
sdr_avg = valid(model, args, config, device, verbose=False)
else:
sdr_avg = valid_multi_gpu(model, args, config, verbose=False)
if sdr_avg > best_sdr:
store_path = args.results_path + '/model_{}_ep_{}_sdr_{:.4f}.ckpt'.format(args.model_type, epoch, sdr_avg)
print('Store weights: {}'.format(store_path))
state_dict = model.state_dict() if len(device_ids) <= 1 else model.module.state_dict()
torch.save(
state_dict,
store_path
)
best_sdr = sdr_avg
scheduler.step(sdr_avg)
if __name__ == "__main__":
train_model(None)