Skip to content

Latest commit

 

History

History
379 lines (346 loc) · 10.4 KB

README.md

File metadata and controls

379 lines (346 loc) · 10.4 KB

simcases

Lifecycle: experimental Travis build Status AppVeyor build status Codecov test coverage License: GPL3 CRAN status CRAN downloads

simcases is an R package to simplify the conduct of simulation studies across multiple cases/scenarios.

Installation

To install the latest release version from CRAN

install.packages("simcases")

To install the latest development version from GitHub

# install.packages("remotes")
remotes::install_github("audrey-b/simcases")

Demonstration

First, define the likelihood, constants, parameters and other characteristics of the models to use for the simulations.

library(simcases)
#> Registered S3 method overwritten by 'rjags':
#>   method               from 
#>   as.mcmc.list.mcarray mcmcr
lik = "for(i in 1:10){
          a[i] ~ dnorm(mu, 1/sigma^2)}"
const = list(mu=0)
sigma1 = list(sigma=1)
sigma2 = list(sigma=2)
all = ".*"
a = "a"

Specify the models to use. The first row is a header and the following rows each describe a model.

models_sims = "code constants parameters monitor
               lik  const     sigma1     a
               lik  const     sigma2     a
               lik  const     sigma1     all
               lik  const     sigma2     all"

Simulate data. The results are written to files.

set.seed(10)
smc_simulate(models = models_sims,
                  nsims = 3,
                  exists = NA,
                  ask = FALSE)
#> [[1]]
#> [1] TRUE
#> 
#> [[2]]
#> [1] TRUE
#> 
#> [[3]]
#> [1] TRUE
#> 
#> [[4]]
#> [1] TRUE

Analyse data according to specific cases (scenarios).

prior <- "sigma ~ dunif(0, 6)"
sigma <- "sigma"
models_analysis <- "code code.add monitor
                    lik  prior    sigma
                    lik  prior    sigma"
cases <- "sims analyse
           1    1
           2    1
           3    2
           4    2"
smc_analyse(models = models_analysis,
                     cases = cases,
                     mode = simanalyse::sma_set_mode("quick"))
#> module dic loaded
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> v data0000001.rds [00:00:00.023]
#> v data0000002.rds [00:00:00.021]
#> v data0000003.rds [00:00:00.029]
#> Success: 3
#> Failure: 0
#> Remaining: 0
#> 
#> Module dic unloaded
#> module dic loaded
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> v data0000001.rds [00:00:00.013]
#> v data0000002.rds [00:00:00.012]
#> v data0000003.rds [00:00:00.019]
#> Success: 3
#> Failure: 0
#> Remaining: 0
#> 
#> Module dic unloaded
#> module dic loaded
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> v data0000001.rds [00:00:00.028]
#> v data0000002.rds [00:00:00.013]
#> v data0000003.rds [00:00:00.012]
#> Success: 3
#> Failure: 0
#> Remaining: 0
#> 
#> Module dic unloaded
#> module dic loaded
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> 
#> Compiling model graph
#>    Resolving undeclared variables
#>    Allocating nodes
#> Graph information:
#>    Observed stochastic nodes: 10
#>    Unobserved stochastic nodes: 1
#>    Total graph size: 18
#> 
#> Initializing model
#> v data0000001.rds [00:00:00.022]
#> v data0000002.rds [00:00:00.014]
#> v data0000003.rds [00:00:00.014]
#> Success: 3
#> Failure: 0
#> Remaining: 0
#> 
#> Module dic unloaded
#> list()

Evaluate the performance of the models across the cases (scenarios)

smc_evaluate(cases, monitor="sigma")
#> list()

Have a look at the files created.

files <- list.files(getwd(), recursive=TRUE, all.files=TRUE)
print(files)
#>  [1] "sims1/.sims.rds"                                  
#>  [2] "sims1/analysis0000001/.seeds.rds"                 
#>  [3] "sims1/analysis0000001/performance/performance.rds"
#>  [4] "sims1/analysis0000001/results/results0000001.rds" 
#>  [5] "sims1/analysis0000001/results/results0000002.rds" 
#>  [6] "sims1/analysis0000001/results/results0000003.rds" 
#>  [7] "sims1/data0000001.rds"                            
#>  [8] "sims1/data0000002.rds"                            
#>  [9] "sims1/data0000003.rds"                            
#> [10] "sims2/.sims.rds"                                  
#> [11] "sims2/analysis0000001/.seeds.rds"                 
#> [12] "sims2/analysis0000001/performance/performance.rds"
#> [13] "sims2/analysis0000001/results/results0000001.rds" 
#> [14] "sims2/analysis0000001/results/results0000002.rds" 
#> [15] "sims2/analysis0000001/results/results0000003.rds" 
#> [16] "sims2/data0000001.rds"                            
#> [17] "sims2/data0000002.rds"                            
#> [18] "sims2/data0000003.rds"                            
#> [19] "sims3/.sims.rds"                                  
#> [20] "sims3/analysis0000002/.seeds.rds"                 
#> [21] "sims3/analysis0000002/performance/performance.rds"
#> [22] "sims3/analysis0000002/results/results0000001.rds" 
#> [23] "sims3/analysis0000002/results/results0000002.rds" 
#> [24] "sims3/analysis0000002/results/results0000003.rds" 
#> [25] "sims3/data0000001.rds"                            
#> [26] "sims3/data0000002.rds"                            
#> [27] "sims3/data0000003.rds"                            
#> [28] "sims4/.sims.rds"                                  
#> [29] "sims4/analysis0000002/.seeds.rds"                 
#> [30] "sims4/analysis0000002/performance/performance.rds"
#> [31] "sims4/analysis0000002/results/results0000001.rds" 
#> [32] "sims4/analysis0000002/results/results0000002.rds" 
#> [33] "sims4/analysis0000002/results/results0000003.rds" 
#> [34] "sims4/data0000001.rds"                            
#> [35] "sims4/data0000002.rds"                            
#> [36] "sims4/data0000003.rds"

Load one file.

readRDS(file.path(getwd(), files[3]))
#>    term        bias        mse cpQuantile
#> 1 sigma -0.06750882 0.02581112  0.6666667

Additional features

When a large number of models is used, it can be more convenient to specify models as data frames to facilitate query and manipulation. The example above may be reproduced as follows.

models <- tibble::tribble(
  ~parameters, ~monitor,
  "sigma1", "a",
  "sigma2", "all"
  )
models <- tidyr::expand(models, parameters, monitor)
models$code <- "lik"
models$constants <- "const"
models
#> # A tibble: 4 x 4
#>   parameters monitor code  constants
#>   <chr>      <chr>   <chr> <chr>    
#> 1 sigma1     a       lik   const    
#> 2 sigma1     all     lik   const    
#> 3 sigma2     a       lik   const    
#> 4 sigma2     all     lik   const

set.seed(10)
smc_simulate(models = models,
                  nsims = 3,
                  fun = identity,
                  exists = NA,
                  ask = FALSE)
#> Warning: Deleted 3 sims data files in './sims1'.
#> Warning: Deleted 3 sims data files in './sims2'.
#> Warning: Deleted 3 sims data files in './sims3'.
#> Warning: Deleted 3 sims data files in './sims4'.
#> [[1]]
#> [1] TRUE
#> 
#> [[2]]
#> [1] TRUE
#> 
#> [[3]]
#> [1] TRUE
#> 
#> [[4]]
#> [1] TRUE

Contribution

Please report any issues.

Pull requests are always welcome.

Please note that this project is released with a Contributor Code of Conduct. By contributing, you agree to abide by its terms.