-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathressim_env.py
339 lines (267 loc) · 13.2 KB
/
ressim_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import functools
from collections import deque
from model.ressim import SaturationEquation, PressureEquation
from model.utils import linear_mobility, quadratic_mobility, lamb_fn, f_fn, df_fn
'''
ResSimEnv_v0: action space consists of producer controls only
ResSimEnv_v1: action space consists of all wells controls
ResSimEnv_v2: variation of ResSimEnv_v0 (frequency of pr eqn steps)
ResSimEnv_v3: variation of ResSimEnv_v1 (frequency of pr eqn steps)
'''
class ResSimEnv_v0():
def __init__(self,
grid, k, phi, s_wir, s_oir, # domain properties
mu_w, mu_o, mobility, # fluid properties
dt, nstep, terminal_step, # timesteps
q, s): # initial conditions
# domain properties
self.grid=grid
assert k.ndim==3, 'Invalid value k. n permeabilities should be provided as a numpy array with shape (n,grid.nx, grid.ny)'
self.k_list = k
self.phi = phi
self.s_wir = s_wir
self.s_oir = s_oir
# fluid properties
self.mu_w = mu_w
self.mu_o = mu_o
assert mobility in ['linear', 'quadratic'], 'invalid mobility parameter. should be one of these: linear, quadratic'
self.mobility = mobility
# timesteps
self.dt = dt # timestep
self.nstep = nstep # no. of timesteps solved in one episodic step
self.terminal_step = terminal_step # terminal step in episode
self.episode_step = 0
# initial conditions
self.q_init = q.copy() # storing inital values for reset function
self.q = q
self.s = s
# original oil in place
self.ooip = self.grid.lx * self.grid.ly * self.phi[0,0] * (1 - self.s_wir-self.s_oir)
# Model function (mobility and fractional flow function)
if mobility=='linear':
self.mobi_fn = functools.partial(linear_mobility, mu_w=self.mu_w, mu_o=self.mu_o, s_wir=self.s_wir, s_oir=self.s_oir) # quadratic mobility model
elif mobility=='quadratic':
self.mobi_fn = functools.partial(quadratic_mobility, mu_w=self.mu_w, mu_o=self.mu_o, s_wir=self.s_wir, s_oir=self.s_oir) # quadratic mobility model
else:
raise Exception('invalid mobility input. should be one of these: linear or quadratic')
self.lamb_fn = functools.partial(lamb_fn, mobi_fn=self.mobi_fn) # total mobility function
self.f_fn = functools.partial(f_fn, mobi_fn=self.mobi_fn) # water fractional flow function
self.df_fn = functools.partial(df_fn, mobi_fn=self.mobi_fn)
# RL parameters
self.metadata = {'render.modes': []} # accordind to instructions on: https://github.com/openai/gym/blob/master/gym/core.py
self.reward_range = (0.0, 1.0) # accordind to instructions on: https://github.com/openai/gym/blob/master/gym/core.py
self.spec = None # accordind to instructions on: https://github.com/openai/gym/blob/master/gym/core.py
# state
self.s_load = self.s
self.state = self.s_load.reshape(-1)
high = np.array([1e5]*self.state.shape[0])
self.observation_space = spaces.Box(low= -high, high=high, dtype=np.float64)
# action
self.tol = 1e-5
self.Q = np.sum(self.q[q>self.tol]) # total flow across the field
self.n_inj = self.q[self.q>self.tol].size # no of injectors
self.i_x, self.i_y = np.where(q>self.tol)[0], np.where(q>self.tol)[1] # injector co-ordinates
self.n_prod = self.q[self.q<-self.tol].size # no of producers
self.p_x, self.p_y = np.where(q<-self.tol)[0], np.where(q<-self.tol)[1] # producer co-ordinates
self.action_space = spaces.Box(low=np.array([0.001]*(self.n_prod), dtype=np.float64),
high=np.array([1]*(self.n_prod), dtype=np.float64),
dtype=np.float64)
# for reproducibility
self.seed()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def action_to_q_mapping_cont(self, action):
prod_flow = action / np.sum(action)
prod_flow = -self.Q * prod_flow
assert np.sum(prod_flow)<0, 'Invalid action: zero producer flow'+str(np.sum(prod_flow))
q = self.q
for x,y,i in zip(self.p_x, self.p_y, range(self.n_prod)):
q[x,y] = prod_flow[i]
if np.abs(np.sum(q)) < self.tol:
q[3,3] = q[3,3] - np.sum(q) # to adjust unbalanced source term in arbitary location in the field due to precision error
return q
def sim_step(self, q):
self.q = q
# solve pressure
self.solverP = PressureEquation(self.grid, q=self.q, k=self.k, lamb_fn=self.lamb_fn)
self.solverS = SaturationEquation(self.grid, q=self.q, phi=self.phi, s=self.s_load, f_fn=self.f_fn, df_fn=self.df_fn)
oil_pr = 0.0
# solve pressure
self.solverP.s = self.solverS.s
self.solverP.step()
self.solverS.v = self.solverP.v
# # cfl number
# v_max = np.max([np.amax(self.solverP.v['x']), np.amax(self.solverP.v['y'])])
# f_max = np.max([self.df_fn(s_) for s_ in np.arange(0,1.1,0.1) ])
# cfl = (v_max*f_max*self.dt)/(self.phi[0,0]*self.grid.vol)
# print(f'cfl: {cfl}')
for _ in range(self.nstep):
# solve saturation
self.solverS.step(self.dt)
self.s_load = self.solverS.s
oil_pr = oil_pr + -np.sum( self.q[self.q<0] * ( 1- self.f_fn(self.s_load[self.q<0]) ) )*self.dt
# state
self.state = self.s_load.reshape(-1)
#reward
reward = oil_pr / self.ooip # recovery rate
# reward = reward*100 # in percentage
# done
self.episode_step += 1
if self.episode_step >= self.terminal_step:
done=True
else:
done=False
return self.state, reward, done, {}
def step(self, action):
q = self.action_to_q_mapping_cont(action)
state, reward, done, info = self.sim_step(q)
return state, reward, done, info
def set_k(self, k):
self.k_list = k
self.k = self.k_list[self.np_random.choice(self.k_list.shape[0])]
def set_observation_space(self, observation_space):
self.observation_space = observation_space
def reset(self):
self.q = self.q_init
self.k = self.k_list[self.np_random.choice(self.k_list.shape[0])]
self.episode_step = 0
self.s_load = self.s
self.state = self.s_load.reshape(-1)
return self.state
def render(self):
pass
def close(self):
pass
class ResSimEnv_v1():
def __init__(self,
grid, k, phi, s_wir, s_oir, # domain properties
mu_w, mu_o, mobility, # fluid properties
dt, nstep, terminal_step, # timesteps
q, s): # initial conditions
# domain properties
self.grid=grid
assert k.ndim==3, 'Invalid value k. n permeabilities should be provided as a numpy array with shape (n,grid.nx, grid.ny)'
self.k_list = k
self.phi = phi
self.s_wir = s_wir
self.s_oir = s_oir
# fluid properties
self.mu_w = mu_w
self.mu_o = mu_o
assert mobility in ['linear', 'quadratic'], 'invalid mobility parameter. should be one of these: linear, quadratic'
self.mobility = mobility
# timesteps
self.dt = dt # timestep
self.nstep = nstep # no. of timesteps solved in one episodic step
self.terminal_step = terminal_step # terminal step in episode
self.episode_step = 0
# initial conditions
self.q_init = q # storing inital values for reset function
self.q = q
self.s = s
# original oil in place
self.ooip = self.grid.lx * self.grid.ly * self.phi[0,0] * (1 - self.s_wir-self.s_oir)
# Model function (mobility and fractional flow function)
if mobility=='linear':
self.mobi_fn = functools.partial(linear_mobility, mu_w=self.mu_w, mu_o=self.mu_o, s_wir=self.s_wir, s_oir=self.s_oir) # quadratic mobility model
elif mobility=='quadratic':
self.mobi_fn = functools.partial(quadratic_mobility, mu_w=self.mu_w, mu_o=self.mu_o, s_wir=self.s_wir, s_oir=self.s_oir) # quadratic mobility model
else:
raise Exception('invalid mobility input. should be one of these: linear or quadratic')
self.lamb_fn = functools.partial(lamb_fn, mobi_fn=self.mobi_fn) # total mobility function
self.f_fn = functools.partial(f_fn, mobi_fn=self.mobi_fn) # water fractional flow function
self.df_fn = functools.partial(df_fn, mobi_fn=self.mobi_fn)
# RL parameters
self.metadata = {'render.modes': []} # accordind to instructions on: https://github.com/openai/gym/blob/master/gym/core.py
self.reward_range = (0.0, 1.0) # accordind to instructions on: https://github.com/openai/gym/blob/master/gym/core.py
self.spec = None # accordind to instructions on: https://github.com/openai/gym/blob/master/gym/core.py
# state
self.s_load = self.s
self.state = self.s_load.reshape(-1)
high = np.array([1e5]*self.state.shape[0])
self.observation_space = spaces.Box(low= -high, high=high, dtype=np.float64)
# action
self.tol = 1e-5
self.Q = np.sum(self.q[q>self.tol]) # total flow across the field
self.n_inj = self.q[self.q>self.tol].size # no of injectors
self.i_x, self.i_y = np.where(q>self.tol)[0], np.where(q>self.tol)[1] # injector co-ordinates
self.n_prod = self.q[self.q<-self.tol].size # no of producers
self.p_x, self.p_y = np.where(q<-self.tol)[0], np.where(q<-self.tol)[1] # producer co-ordinates
self.action_space = spaces.Box(low=np.array([0.001]*(self.n_prod+self.n_inj), dtype=np.float64),
high=np.array([1]*(self.n_prod+self.n_inj), dtype=np.float64),
dtype=np.float64)
# for reproducibility
self.seed()
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def action_to_q_mapping_cont(self, action):
assert all(action>0), 'Invalid action. condition violated: all(action>0) = True'
# convert input array into producer/injector
inj_flow = action[:self.n_inj] / np.sum(action[:self.n_inj])
inj_flow = self.Q * inj_flow
prod_flow = action[self.n_inj:] / np.sum(action[self.n_inj:])
prod_flow = -self.Q * prod_flow
assert np.sum(inj_flow)>0, 'Invalid action: zero injector flow'
assert np.sum(prod_flow)<0, 'Invalid action: zero producer flow'
# add producer/injector flow values
q = np.zeros(self.grid.shape)
for i,(x,y) in enumerate( zip(self.i_x, self.i_y) ):
q[x,y] = inj_flow[i]
for i,(x,y) in enumerate( zip(self.p_x, self.p_y) ):
q[x,y] = prod_flow[i]
if np.abs(np.sum(q)) < self.tol:
q[3,3] = q[3,3] - np.sum(q) # to adjust unbalanced source term in arbitary location in the field due to precision error
return q
def sim_step(self, q):
self.q = q
# solve pressure
self.solverP = PressureEquation(self.grid, q=self.q, k=self.k, lamb_fn=self.lamb_fn)
self.solverS = SaturationEquation(self.grid, q=self.q, phi=self.phi, s=self.s_load, f_fn=self.f_fn, df_fn=self.df_fn)
oil_pr = 0.0
# solve pressure
self.solverP.s = self.solverS.s
self.solverP.step()
self.solverS.v = self.solverP.v
for _ in range(self.nstep):
# solve saturation
self.solverS.step(self.dt)
self.s_load = self.solverS.s
oil_pr = oil_pr + -np.sum( self.q[self.q<0] * ( 1- self.f_fn(self.s_load[self.q<0]) ) )*self.dt
# state
self.state = self.s_load.reshape(-1)
#reward
reward = oil_pr / self.ooip # recovery rate
# reward = reward*100 # in percentage
# done
self.episode_step += 1
if self.episode_step >= self.terminal_step:
done=True
else:
done=False
return self.state, reward, done, {}
def step(self, action):
q = self.action_to_q_mapping_cont(action)
state, reward, done, info = self.sim_step(q)
return state, reward, done, info
def set_k(self, k):
self.k_list = k
self.k = self.k_list[self.np_random.choice(self.k_list.shape[0])]
def set_observation_space(self, observation_space):
self.observation_space = observation_space
def reset(self):
self.q = self.q_init
self.k = self.k_list[self.np_random.choice(self.k_list.shape[0])]
self.episode_step = 0
self.s_load = self.s
self.state = self.s_load.reshape(-1)
return self.state
def render(self):
pass
def close(self):
pass