-
Notifications
You must be signed in to change notification settings - Fork 117
/
model.py
196 lines (167 loc) · 7.89 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright 2019 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from torch import nn
import texar.torch as tx
class Transformer(nn.Module):
r"""A standalone sequence-to-sequence Transformer model, from "Attention
Is All You Need". The Transformer model consists of the word embedding
layer, position embedding layer, an encoder and a decoder. Both encoder
and decoder are stacks of self-attention layers followed by feed-forward
layers. See "Attention Is All You Need" (https://arxiv.org/abs/1706.03762)
for the full description of the model.
"""
def __init__(self, model_config, data_config, vocab: tx.data.Vocab):
super().__init__()
self.config_model = model_config
self.config_data = data_config
self.vocab = vocab
self.vocab_size = vocab.size
self.word_embedder = tx.modules.WordEmbedder(
vocab_size=self.vocab_size,
hparams=self.config_model.emb)
self.pos_embedder = tx.modules.SinusoidsPositionEmbedder(
position_size=self.config_data.max_decoding_length,
hparams=self.config_model.position_embedder_hparams)
self.encoder = tx.modules.TransformerEncoder(
hparams=self.config_model.encoder)
self.decoder = tx.modules.TransformerDecoder(
token_pos_embedder=self._embedding_fn,
vocab_size=self.vocab_size,
output_layer=self.word_embedder.embedding,
hparams=self.config_model.decoder)
self.smoothed_loss_func = LabelSmoothingLoss(
label_confidence=self.config_model.loss_label_confidence,
tgt_vocab_size=self.vocab_size,
ignore_index=0)
def _embedding_fn(self, tokens: torch.LongTensor,
positions: torch.LongTensor) -> torch.Tensor:
word_embed = self.word_embedder(tokens)
scale = self.config_model.hidden_dim ** 0.5
pos_embed = self.pos_embedder(positions)
return word_embed * scale + pos_embed
def forward(self, # type: ignore
encoder_input: torch.Tensor,
decoder_input: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
beam_width: Optional[int] = None):
r"""Compute the maximum likelihood loss or perform decoding, depending
on arguments.
Args:
encoder_input: the source sentence embedding, with the shape of
`[batch_size, source_seq_length, input_dim]`.
decoder_input: the target sentence embedding, with the shape of
`[batch_size, target_seq_length, input_dim]`.
labels: the target sentence labels, with the shape of
`[batch_size, target_seq_length]`.
beam_width: Used in beam search.
:returns:
- If both :attr:`decoder_input` and :attr:`labels` are both
provided, the function enters training logic and returns the
maximum likelihood loss.
- Otherwise the function enters inference logic and returns the
decoded sequence.
- If `beam_width` > 1, beam search decoding is performed. Please
refer to :meth:`texar.modules.TransformerDecoder.forward` for
details on return types.
"""
batch_size = encoder_input.size(0)
# Text sequence length excluding padding
encoder_input_length = (encoder_input != 0).int().sum(dim=1)
positions = torch.arange(
encoder_input_length.max(), dtype=torch.long,
device=encoder_input.device).unsqueeze(0).expand(batch_size, -1)
# Source word embedding
src_input_embedding = self._embedding_fn(encoder_input, positions)
encoder_output = self.encoder(
inputs=src_input_embedding, sequence_length=encoder_input_length)
if decoder_input is not None and labels is not None:
# enter the training logic
# For training
outputs = self.decoder(
memory=encoder_output,
memory_sequence_length=encoder_input_length,
inputs=decoder_input,
decoding_strategy="train_greedy",
)
label_lengths = (labels != 0).long().sum(dim=1)
is_target = (labels != 0).float()
mle_loss = self.smoothed_loss_func(
outputs.logits, labels, label_lengths)
mle_loss = (mle_loss * is_target).sum() / is_target.sum()
return mle_loss
else:
start_tokens = encoder_input.new_full(
(batch_size,), self.vocab.bos_token_id)
predictions = self.decoder(
memory=encoder_output,
memory_sequence_length=encoder_input_length,
beam_width=beam_width,
length_penalty=self.config_model.length_penalty,
start_tokens=start_tokens,
end_token=self.vocab.eos_token_id,
max_decoding_length=self.config_data.max_decoding_length,
decoding_strategy="infer_greedy",
)
# Uses the best sample by beam search
return predictions
class LabelSmoothingLoss(nn.Module):
r"""With label smoothing,
KL-divergence between q_{smoothed ground truth prob.}(w)
and p_{prob. computed by model}(w) is minimized.
Args:
label_confidence: the confidence weight on the ground truth label.
tgt_vocab_size: the size of the final classification.
ignore_index: The index in the vocabulary to ignore weight.
"""
one_hot: torch.Tensor
def __init__(self, label_confidence, tgt_vocab_size, ignore_index=0):
super().__init__()
self.ignore_index = ignore_index
self.tgt_vocab_size = tgt_vocab_size
label_smoothing = 1 - label_confidence
assert 0.0 < label_smoothing <= 1.0
smoothing_value = label_smoothing / (tgt_vocab_size - 2)
one_hot = torch.full((tgt_vocab_size,), smoothing_value)
one_hot[self.ignore_index] = 0
self.register_buffer("one_hot", one_hot.unsqueeze(0))
self.confidence = label_confidence
def forward(self, # type: ignore
output: torch.Tensor,
target: torch.Tensor,
label_lengths: torch.LongTensor) -> torch.Tensor:
r"""Compute the label smoothing loss.
Args:
output (FloatTensor): batch_size x seq_length * n_classes
target (LongTensor): batch_size * seq_length, specify the label
target
label_lengths(torch.LongTensor): specify the length of the labels
"""
orig_shapes = (output.size(), target.size())
output = output.view(-1, self.tgt_vocab_size)
target = target.view(-1)
model_prob = self.one_hot.repeat(target.size(0), 1)
model_prob = model_prob.to(device=target.device)
model_prob.scatter_(1, target.unsqueeze(1), self.confidence)
model_prob.masked_fill_((target == self.ignore_index).unsqueeze(1), 0)
output = output.view(orig_shapes[0])
model_prob = model_prob.view(orig_shapes[0])
return tx.losses.sequence_softmax_cross_entropy(
labels=model_prob,
logits=output,
sequence_length=label_lengths,
average_across_batch=False,
sum_over_timesteps=False,
)