forked from RemexHu/BandwidthPrediction-LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train_uni_batchnorm.py
123 lines (90 loc) · 4.4 KB
/
Train_uni_batchnorm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import pandas
import matplotlib.pyplot as plt
import numpy
import matplotlib.pyplot as plt
import pandas
import math
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM, GRU
from keras.layers import Dropout
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import numpy as np
import random
#dataset = pandas.read_csv('train.csv', usecols=[1], engine='python')
#dataset = dataset[:1600]
file = []
file.append(pandas.read_csv('train.oslo-vestby-report.2011-02-11_1618CET.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/tram.jernbanetorget-ljabru-report.2010-12-09_1222CET.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/ferry.nesoddtangen-oslo-report.2010-09-20_1542CEST.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/car.aarnes-elverum-report.2011-02-10_1611CET.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/bus.ljansbakken-oslo-report.2011-01-31_1025CET.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/metro.kalbakken-jernbanetorget-report.2010-09-14_2303CEST.log', names = ["band"], sep = '\t'))
print(len(file))
print('Training data loaded!')
for epoch in range(10):
random.shuffle(file)
for cur in file:
cur_data = np.asarray(cur)
cur_data = np.vstack(cur_data)
# plt.figure(figsize=(25,9))
# plt.plot(dataset)
# plt.show()
scaler = MinMaxScaler(feature_range=(0, 1))
cur_data = scaler.fit_transform(cur_data)
train_size = int(len(cur_data) * 0.9)
test_size = len(cur_data) - train_size
train, test = cur_data[0:train_size, :], cur_data[train_size:len(cur_data), :]
train_rev, test_rev = train[::-1], test[::-1]
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset) - look_back - 1):
a = dataset[i:(i + look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
trainX_rev, trainY_rev = create_dataset(train_rev, look_back)
testX_rev, testY_rev = create_dataset(test_rev, look_back)
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1], 1))
trainX_rev = numpy.reshape(trainX_rev, (trainX_rev.shape[0], trainX_rev.shape[1], 1))
testX_rev = numpy.reshape(testX_rev, (testX_rev.shape[0], testX_rev.shape[1], 1))
trainY_inverse = scaler.inverse_transform([trainY])
testY_inverse = scaler.inverse_transform([testY])
trainY_rev_inverse = scaler.inverse_transform([trainY_rev])
testY_rev_inverse = scaler.inverse_transform([testY_rev])
try:
model_mse = keras.models.load_model('model_mse_uni3.h5')
print('load existing model succeed')
except:
print('Training from new model')
model_mse = Sequential()
model_mse.add(GRU(256, input_shape=(trainX.shape[1], trainX.shape[2]), return_sequences=True))
#model_mse.add(Dropout(0.4))
#model_mse.add(GRU(256, return_sequences=True))
model_mse.add(Dropout(0.4))
# model_mse.add(Dropout(0.2))
model_mse.add(GRU(64))
# model_mse.add(Dropout(0.2))
model_mse.add(Dense(1))
model_mse.compile(loss='mean_squared_error', optimizer='adam')
# model_mse.summary()
try:
model_mse.fit(trainX, trainY, epochs=20, batch_size=64, verbose=2)
model_mse.save('model_mse_uni3.h5')
except KeyboardInterrupt:
model_mse.save('model_mse_uni3.h5')
try:
model_mse.fit(trainX_rev, trainY_rev, epochs=20, batch_size=64, verbose=2)
model_mse.save('model_mse_uni3.h5')
except KeyboardInterrupt:
model_mse.save('model_mse_uni3.h5')
model_mse.save('model_mse_uni3.h5')
model_mse.save('model_mse_uni3.h5')
print('Training process completed! Model saved!')