Nebula-Bench
用于测试 nebula-graph 的基线性能数据,使用 LDBC v0.3.3 的标准数据集。
当前只适用于 nebula graph v2.0 以上版本。
主要功能:
- 生产 LDBC 数据集并导入 nebula graph。
- 用 k6 进行压测。
Nebula Bench | Nebua | Nebula Importer | K6 Plugin | ldbc_snb_datagen | Nebula-go |
---|---|---|---|---|---|
v0.2 | v2.0.1 | v2.0.0-ga | v0.0.6 | v0.3.3 | v2.0.0-ga |
v1.0.0 | v2.5.0 | v2.5.0 | v0.0.7 | v0.3.3 | v2.5.0 |
v1.1.0 | v3.0.0 | v3.0.0 | v0.0.9 | v0.3.3 | v3.0.0 |
master | nightly | master | master | v0.3.3 | master |
sudo yum install -y git \
make \
file \
libev \
libev-devel \
gcc \
wget \
python3 \
python3-devel \
java-1.8.0-openjdk \
maven
git clone https://github.com/vesoft-inc/nebula-bench.git
cd nebula-bench
pip3 install --user -r requirements.txt
python3 run.py --help
准备 nebula graph 的工具。
安装 golang,然后编译相关工具。
/bin/bash scripts/setup.sh
如果 go get 的包下载不下来,需要设置 golang 代理。
export GOPROXY=https://goproxy.cn
编译后,二进制包在 scripts
文件夹中。
python3 run.py data
会自动下载 Hadoop,然后使用 ldbc_snb_datagen 生成数据。
为了方便 importer 导入,将生成后的文件拆分了一个带头的 header 文件,再去掉原有文件第一行。
默认生成的文件在 ${PWD}/target/data/test_data/
。
更多命令
# generate sf10 ldbc data
python3 run.py data -s 10
# change hadoop options
export HADOOP_CLIENT_OPTS="-Xmx8G"
python3 run.py data -s 100
# only generate, do not split the data
python3 run.py data -og
# split data, no need generate again.
python3 run.py data -os
python3 run.py nebula importer
会根据 header 文件,自动生成 importer 的配置文件,然后运行 importer 导入。
# after prepare the data, you could import the data to any nebula graph as you want.
# space is mytest, graph address is 127.0.0.1:9669
python3 run.py nebula importer -s mytest -a 127.0.0.1:9669
# or using dotenv
cp env .env
# vi .env
python3 run.py nebula importer
# dry run, just create the import config file, and you can modify any configuration。
# by default, PARTITION_NUM is 24, REPLICA_FACTOR is 3.
python3 run.py nebula importer --dry-run
使用带有 xk6-nebula 插件的 K6 来进行压测。
自动化的场景,在 nebula_bench/scenarios/
中。
# show help
python3 run.py stress run --help
# run all scenarios with 100 virtual users, every scenario lasts 60 seconds.
python3 run.py stress run
# run all scenarios with 10 virtual users, every scenario lasts 3 seconds.
python3 run.py stress run --args='-u 10 -d 3s'
# list all stress test scenarios
python3 run.py stress scenarios
# run go.Go1Step scenarios with 10 virtual users, every scenario lasts 3 seconds.
python3 run.py stress run -scenario go.Go1Step --args='-u 10 -d 3s'
# run go.Go1Step scenarios with special test stage.
# ramping up from 0 to 10 vus in first 10 seconds, then run 10 vus in 30 seconds,
# then ramping up from 10 to 50 vus in 10 seconds.
python3 run.py stress run -scenario go.Go1Step --args='-s 10s:10 -s 30s:10 -s 10s:50'
# use csv output
python3 run.py stress run -scenario go.Go1Step --args='-s 10s:10 -s 30s:10 -s 10s:50 -o csv=test.csv'
更多 k6 参数,请参考。
scripts/k6 run --help
k6 config file, summary result and outputs are in output
folder. e.g.
# you should install jq to parse json.
# how many checks
jq .metrics.checks output/result_Go1Step.json
# summary latency
jq .metrics.latency output/result_Go1Step.json
# summary error message
awk -F ',' 'NR>1{print $NF}' output/output_Go1Step.csv |sort|uniq -c
或者从标准输出看测试的结果。
✓ IsSucceed
█ setup
█ teardown
checks...............: 100.00% ✓ 113778 ✗ 0
data_received........: 0 B 0 B/s
data_sent............: 0 B 0 B/s
iteration_duration...: min=747.84µs avg=52.76ms med=40.77ms max=1.17s p(90)=98.68ms p(95)=147.15ms p(99)=263.03ms
iterations...........: 113778 1861.550127/s
latency..............: min=462 avg=49182.770298 med=37245 max=1160358 p(90)=93377 p(95)=142304.15 p(99)=258465.89
responseTime.........: min=662 avg=52636.793537 med=40659 max=1177651 p(90)=98556.5 p(95)=147036.15 p(99)=262869.63
vus..................: 100 min=0 max=100
vus_max..............: 100 min=100 max=100
checks
,每次执行有一个检查点,默认是检查服务端返回的isSucceed
。data_received
和data_sent
,是 k6 工具自带的,对 nebula 用处不大。iteration_duration
,每次执行的总时间。latency
,服务端耗时。responseTime
,客户端耗时。vus
,并发的用户数
大体来说
iteration_duration = responseTime + (客户端从 csv 读数据的耗时)
responseTime = latency + (网络传输的耗时) + (客户端解码的耗时)
因为一个查询有一个检查点,所以上面代表执行了 113778 个 query,所有都成功了。
latency 的单位是 us
。
- 生成的数据文件,如果是
aaa_xxYY_bbb
格式,比如comment_hasTag_tag
,会认为是一个边类型,然后边的格式是XX_YY
。和 ldbc 保持一致 ldbc_snb_interactive - 否则是一个 Tag 类型。
- 不同的 Tag,有可能 Vertex ID 是一样的,比如 Forum 和 Post。暂时没有特殊处理。