-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
142 lines (121 loc) · 3.93 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import pandas as pd
import numpy as np
import os
from random import sample
# patterns = {
# "charge": "{:03d}",
# "clus": "{:04d}",
# "dst": "{:06d}",
# "hist": "{:06d}",
# "enumber": "{:05d}",
# "etime": "{:e}",
# "rnumber": "{:07d}",
# "nlb": "{:04d}",
# "qxb": "{:e}",
# "tracks": "{:04d}",
# "vertex": "{:e}",
# "zdc": "{:03d}",
# }
# names = {
# 'charge': np.int32,
# 'clus': np.int32,
# 'dst': np.int32,
# 'hist': np.int32,
# 'enumber': np.int32,
# 'etime': np.float64,
# 'rnumber': np.int32,
# 'nlb': np.int32,
# 'qxb': np.float64,
# 'tracks': np.int32,
# 'vertex': np.float64,
# 'zdc': np.int32,
# }
names = {
"dst": np.int32,
"hist": np.int32,
"enumber": np.int32,
"etime": np.float64,
"rnumber": np.int32,
}
# def download_data():
# if not os.path.exists("./data"):
# os.mkdir("./data")
# import urllib.request
# urllib.request.urlretrieve(
# "https://sdm.lbl.gov/fastbit/data/star2000.csv.gz",
# "data/star2000.csv.gz",
# )
class DataProcessor:
def __init__(self):
self.data = self.load_data()
self.data_to_list_of_dict()
def load_data(self):
# if not os.path.exists("data/star2000.csv.gz"):
# download_data()
if os.path.exists("data/star2000.txt"):
with open("data/star2000.txt", "r") as f:
lines = [line.strip() for line in f.readlines()]
return lines
data = pd.read_csv(
"data/star2000.csv.gz",
header=None,
usecols=[2, 3, 4, 5, 6],
names=list(names),
dtype=names,
)
lines = []
with open("data/star2000.txt", "w") as f:
for idx, row in data.iterrows():
string = self._row_to_string(idx, row)
f.write(f"{string}\n")
lines.append(string)
return lines
# def _num2str(self, num, dtype, pattern):
# if dtype == np.int32:
# return pattern.format(int(num))
# if dtype == np.float64:
# return pattern.format(num)
# raise ValueError(f"No dtype as {dtype}")
# def _row_to_string(self, idx, row):
# features = [
# f"{name}:{self._num2str(row[name], dtype, patterns[name])}"
# for name, dtype in names.items()
# ]
# string = ",".join(features)
# return f"{idx:07}${string}"
def _num2str(self, num, dtype):
if dtype == np.int32:
return f"{int(num):d}"
if dtype == np.float64:
return int(float(num))
# return f"{num:e}"
raise ValueError(f"No dtype as {dtype}")
def _row_to_string(self, idx, row):
features = [
f"{col}:{self._num2str(row[col], dtype)}" for col, dtype in names.items()
]
string = ",".join(features)
return f"{idx:07}${string}"
def data_to_list_of_dict(self):
def line_to_dict(line, delimiter="$"):
instruction, output = line.split(delimiter, maxsplit=1)
return {"instruction": f"{instruction}{delimiter}", "output": output}
self.data = [line_to_dict(line) for line in self.data]
def sample_data(processor, size):
return sample(processor.data, size)
def estimate_model_size(model):
"""Estimate Pytorch model size in MB"""
param_size = 0
for param in model.parameters():
param_size += param.nelement() * param.element_size()
buffer_size = 0
for buffer in model.buffers():
buffer_size += buffer.nelement() * buffer.element_size()
size_all_mb = (param_size + buffer_size) / 1024**2
print(f"Parameter size is {param_size / 1024**2:.2f}MB")
print(f"Buffer size is {buffer_size / 1024**2:.2f}MB")
print(f"Model size is {size_all_mb:.2f}MB")
return size_all_mb
if __name__ == "__main__":
processor = DataProcessor()
print(sample_data(processor, 2))