-
Notifications
You must be signed in to change notification settings - Fork 11
/
fMRIDiag_plot.m
556 lines (504 loc) · 18.2 KB
/
fMRIDiag_plot.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
function fMRIDiag_plot(V,D_Stat,varargin)
% fMRIDiag_plot(V,D_Stat,varargin)
% Draws main var components (+ non-global comps) with BOLD intensity for
% further diagnosis.
%
%%%%INPUTS
% V : Is a structure which contains the variance components. For more
% information regarding how to estimate the V, please see DSEvars.m
%
% D_Stat : Is a structure which contains the statistics of DVARS
% inference. Can be obtained via DVARSCalc.m.
%
% The following arguments are optional:
%
% 'FD' : The frame-wise deplacement. FD can be calculated by FDCalc.m
% By triggering this option, a subplot is added at the top of the
% figure.
%
% 'AbsMov' : Absolute movement parameters which helps to gain a better
% insight regarding the FD components. It can be a matrix of
% 2xT-1 where the rows indicated main movement components
% (rotation and trasnlational)
%
% 'Idx' : The index of significant DVARS spikes which can be calculated
% via DVARSCalc.m. If the argument is not used, the
% Idx is found via Bonferroni correction on p-values of
% D_Stat structure.
%
% 'BOLD' : Intensity BOLD image. If triggered, a subplot is added at the
% bottom of the figure.
%
% 'figure' : handle for the figure. Default is a 1600x1400 figure window
%
% 'norm' & 'scale' : For intensity normalisation, similar to DVARSCalc.m
%
% 'ColRng' : Colour range for BOLD intensity image. [Default is [-3 3] ]
%
% 'TickScaler' : If set to <1 then the number of ticks on the right y-axis
% DSEvars sub-figure will be less. If set to >1, then more
% ticks is shown [Default: 1]
%
%
% 'verbose' : Print the log? if yes, set to 1, if not set to 0.
%
% Line/figure Specs such as: 'linewidth' and 'fontsize' as in matlab.
%
%
%%%%EXAMPLE
%
% - %To produce the diagnostic figure for pure white noise, with two
% %subplots.
% [V,Stat]=DSEvars(randn(10e4,100));
% fMRIDiag_plot(V)
%
% - %To produce the diagnostic figure for HCP subject 100307
% OneSub='~/100307/rfMRI_REST1_LR.nii.gz' %a HCP Subject
% [V,Stat]=DSEvars(OneSub);
% fMRIDiag_plot(V)
%
% - %To produce *full* diagnostic figure for HCP subject 100307
% This example shows a full diagnostic procedure using DSE var
% decomposition and DVARS inference.
%
% OneSub='~/100307/rfMRI_REST1_LR.nii.gz' %a HCP Subject
% [V,V_Stat]=DSEvars(OneSub);
%
% [DVARS,D_Stat]=DVARSCalc(OneSub);
% idx=find(D_Stat.pvals<0.05./(T-1)); %to find the significant spikes
%
% MovPar=MovPartextImport(['~/100307/Movement_Regressors.txt']);
% [FDts,FD_Stat]=FDCalc(MovPar);
%
% V1 = load_untouch_nii(OneSub);
% V2 = V1.img;
% X0 = size(V2,1); Y0 = size(V2,2); Z0 = size(V2,3); T0 = size(V2,4);
% I0 = prod([X0,Y0,Z0]);
% Y = reshape(V2,[I0,T0]); clear V2 V1;
%
% f_hdl=figure('position',[50,500,600,600]);
% fMRIDiag_plot(V,'Idx',idx,'BOLD',Y,'FD',FDts,'AbsMov',[FD_Stat.AbsRot FD_Stat.AbsTrans],'figure',f_hdl)
%
%
%
%%%%REFERENCES
%
% Afyouni S. & Nichols T.E., Insights and inference for DVARS, 2017
% http://www.biorxiv.org/content/early/2017/04/06/125021.1
%
% Soroosh Afyouni & Thomas Nichols, UoW, Feb 2017
%
% https://github.com/asoroosh/DVARS
% http://warwick.ac.uk/tenichols
%
% Please report bugs to [email protected]
%
%External updates:
% Eswar Damaraju <[email protected]>: fixed for empty Idx
%
FDflag = 0; AbsMovflag = 0; BOLDFlag = 0;
md = []; scl = []; verbose = 1; gsrflag = 0;
nsp = 14; lw = 2; lfs = 14; noColRngflag = 0;
TickScaler = 1; %GrandMean = 100;
if sum(strcmpi(varargin,'gsrflag'))
gsrflag = varargin{find(strcmpi(varargin,'gsrflag'))+1};
end
% if sum(strcmpi(varargin,'GrandMean')) %needed for time when we had global
% timeseries on the plot.
% GrandMean = varargin{find(strcmpi(varargin,'GrandMean'))+1};
% end
if sum(strcmpi(varargin,'fd'))
FDts = varargin{find(strcmpi(varargin,'fd'))+1};
FDflag = 1;
end
% if sum(strcmpi(varargin,'prefix'))
% prefix = varargin{find(strcmpi(varargin,'prefix'))+1};
% end
if sum(strcmpi(varargin,'AbsMov'))
AbsMov = varargin{find(strcmpi(varargin,'AbsMov'))+1};
AbsMovflag = 1;
end
%
if sum(strcmpi(varargin,'idx'))
Idx = varargin{find(strcmpi(varargin,'idx'))+1};
else
Idx = find(D_Stat.pvals<0.05./(D_Stat.dim(2)-1));
end
%
if sum(strcmpi(varargin,'Thick'))
Thickness = varargin{find(strcmpi(varargin,'Thick'))+1};
elseif D_Stat.dim(2)>500
Thickness = 1;
else
Thickness = 0.5;
end
%
if sum(strcmpi(varargin,'PracticalThreshold'))
psig = varargin{find(strcmpi(varargin,'PracticalThreshold'))+1};
else
psig = 5; % 5% level of pratical significance.
end
%
if sum(strcmpi(varargin,'BOLD'))
Y = varargin{find(strcmpi(varargin,'BOLD'))+1};
BOLDFlag = 1;
nsp = 20;
end
%
if sum(strcmpi(varargin,'figure'))
f_hdl = varargin{find(strcmpi(varargin,'figure'))+1};
else
f_hdl=figure('position',[50,500,1600,1400]);
hold on; box on;
end
%
if sum(strcmpi(varargin,'colrng'))
ColRng = varargin{find(strcmpi(varargin,'colrng'))+1};
else
noColRngflag = 1;
end
%
if sum(strcmpi(varargin,'norm'))
scl = varargin{find(strcmpi(varargin,'norm'))+1};
end
%
if sum(strcmpi(varargin,'TickScaler'))
TickScaler = varargin{find(strcmpi(varargin,'TickScaler'))+1};
end
if sum(strcmpi(varargin,'scale'))
scl = varargin{find(strcmpi(varargin,'scale'))+1};
md = 1;
end
%
if sum(strcmpi(varargin,'verbose'))
verbose = varargin{find(strcmpi(varargin,'verbose'))+1};
end
%
if sum(strcmpi(varargin,'linewidth'))
lw = varargin{find(strcmpi(varargin,'linewidth'))+1};
end
%
if sum(strcmpi(varargin,'fontsize'))
lfs = varargin{find(strcmpi(varargin,'fontsize'))+1};
end
%###################################################################################
Col=get(groot,'defaultAxesColorOrder');
Acol=Col(5,:); % Green
FDcol=[.5 .5 .5];
Dcol=Col(1,:); % Blue
Scol=Col(3,:); % Yellow
Ecol=Col(4,:); % Purple
PsigCol=Col(2,:); % Red (/orange!)
T=length(V.Avar_ts);
Time=1:T;
hTime=(1:(T-1))+0.5;
eTime=[1 T];
%###################################################################################
figure(f_hdl)
%---------------------------Allvar
% sph0=subplot(nsp,1,[1 2]);
% hold on; box on;
% plot(Time,sqrt(V.Avar_ts(Time)),'color',Acol,'linestyle','-','linewidth',lw-.5)
% ylabel('All','fontsize',lfs);
% axis tight;
% PatchMeUp(Idx);
% set(sph0,'ygrid','on','xticklabel',[])
% axis tight
%---------------------------FD%---------------------------
if FDflag
sph0 = subplot(nsp,1,[1 2]);
hold on; box on;
yyaxis left
FDline = plot(hTime,FDts,'color','k','linestyle','-','linewidth',lw-0.5);
plot(hTime,ones(1,T-1)*0.5,'linewidth',lw,'linestyle','-.','color','r');
plot(hTime,ones(1,T-1)*0.2,'linewidth',lw,'linestyle','-.','color','r');
if max(FDts)>0.6
ylim([0 max(FDts)+0.1]);
else
ylim([0 0.6]);
end
ylabel('FD (mm)','fontsize',lfs,'interpreter','latex','color','k');
%axis tight;
PatchMeUp(Idx,Thickness);
set(sph0,'ygrid','on','xticklabel',[],'xlim',[1 T],'ytick',[0.2 0.5],'ycolor','k')
if AbsMovflag
yyaxis right
mov1line=plot(Time,AbsMov(:,1),'color',FDcol+[0.1,0.3,0.3],'linestyle','-','linewidth',lw-0.9);
mov2line=plot(Time,AbsMov(:,2),'color',FDcol+[0.1,0.5,0.5],'linestyle','-','linewidth',lw-0.9);
axis tight
ylabel('D (mm)','fontsize',lfs,'interpreter','latex');
legend([FDline mov1line mov2line],{'FD','|Rotation|','|Translation|'},'location','northwest')
else
yyaxis right
set(sph0,'yticklabel',[],'ycolor','k')
end
end
%---------------------------Whole%---------------------------
sph1=subplot(nsp,1,[3 11]);
hold on; box on;
%title('DSE Variance Decomposition (RMS units)','fontsize',13)
yyaxis(sph1,'left')
Aline = line(Time,sqrt(V.Avar_ts),'LineStyle','-','linewidth',lw,'color',Acol);
line(Time,ones(1,T).*mean(sqrt(V.Avar_ts)),'LineStyle',':','linewidth',.5,'color',Acol)
Dline = line(hTime,sqrt(V.Dvar_ts),'LineStyle','-','linewidth',lw,'color',Dcol);
line(hTime,ones(1,T-1).*mean(sqrt(V.Dvar_ts)),'LineStyle',':','linewidth',.5,'color',Dcol)
Sline = line(hTime,sqrt(V.Svar_ts),'LineStyle','-','linewidth',lw,'color',Scol);
line(hTime,ones(1,T-1).*mean(sqrt(V.Svar_ts)),'LineStyle',':','linewidth',.5,'color',Scol)
Edots = line(eTime,sqrt(V.Evar_ts),'LineStyle','none','Marker','o','markerfacecolor',Ecol,'linewidth',3,'color',Ecol);
ylabel('$\sqrt{\mathrm{Variance}}$','fontsize',lfs,'interpreter','latex')
YLim2 = ylim.^2/mean(V.Avar_ts)*100;
set(sph1,'ycolor','k','xlim',[1 T])
yyaxis(sph1,'right')
YTick2 = PrettyTicks(YLim2,TickScaler); YTick=sqrt(YTick2);
set(sph1,'XTick',[],'Ylim',sqrt(YLim2),'YTick',sqrt(YTick2),'YtickLabel',num2str([YTick2']));
ylabel('\% of A-var','fontsize',lfs,'interpreter','latex')
%set(sph2,'ygrid','on')
h = abline('h',YTick);
set(h,'linestyle','-','color',[.5 .5 .5]); %the grids!
set(sph1,'ycolor','k','xlim',[1 T])
h_Idx = PatchMeUp(Idx,Thickness);
if isempty(Idx) %ED
legend([Aline Dline Sline Edots],{'A-var','D-var','S-var','E-var'},'location','northwest') %ED
else %ED
legend([Aline Dline Sline Edots h_Idx(1)],{'A-var','D-var','S-var','E-var','Statistically Significant'},'location','northwest')
end %ED
%---------------------------Global%---------------------------
% sph2=subplot(nsp,1,[12 13]);
% hold on; box on;
% %yyaxis(sph2,'left')
% cntrd_g_ts=V.g_Ats+GrandMean;
% plot(Time,cntrd_g_ts,'color',Acol,'linestyle','-','linewidth',lw);
% %line(hTime,ones(1,T-1).*mean(V.g_Ats+mean(V.MeanOrig)),'LineStyle','-.','linewidth',.5,'color',Acol)
%
% %%%%%%%%%%%%%%%%%%%% Un-ccomment next 4 code lines if you need to see the gDvar and gSvar. %%%%%%%%%%%%%%%%%%%%
% %plot(hTime,V.g_Dts+mean(V.MeanOrig),'color',Dcol,'linestyle','-','linewidth',lw);
% %line(hTime,ones(1,T-1).*(mean(V.g_Dts)+mean(V.MeanOrig)),'LineStyle','-.','linewidth',.5,'color',Dcol)
%
% %plot(hTime,V.g_Sts+mean(V.MeanOrig),'color',Scol,'linestyle','-','linewidth',lw);
% %line(hTime,ones(1,T-1).*(mean(V.g_Sts)+mean(V.MeanOrig)),'LineStyle','-.','linewidth',.5,'color',Scol)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% mx_cntrd_g_ts=max(cntrd_g_ts); mn_cntrd_g_ts=min(cntrd_g_ts);
% stps=abs(round(diff([mx_cntrd_g_ts mn_cntrd_g_ts])./3,1));
% Ytcks=round(min(cntrd_g_ts):stps:max(cntrd_g_ts),2);
%
% ylabel('A$_{Gt}$','fontsize',lfs,'interpreter','latex')
% %axis tight
% %set(sph2,'ycolor','k')
% %Ylim=ylim; Ylim=mean(Ylim)+0.5*[-1,1]*diff(Ylim)*2; ylim(Ylim)
% %ylim_tmp=ylim; dylim_tmp=(ylim_tmp-mean(V.MeanOrig)); dylims_tmp=dylim_tmp./abs(dylim_tmp);
% %YLim22=(dylim_tmp.^2/mean(V.Avar_ts));
% %YLim22=((dylim_tmp.^2/mean(V.Avar_ts))-mean(YLim22))*100;
% set(sph2,'ygrid','on','xlim',[1 T],'ycolor','k','yTick',Ytcks)
% ytickformat('%,.2f')
%
% axis tight
% PatchMeUp(Idx,Thickness);
%---------------------------\Delta\%D-var---------------------------
sph2=subplot(nsp,1,[12 13]);
hold on; box on;
%yyaxis(sph2,'left')
plot(hTime,D_Stat.DeltapDvar,'color',Dcol,'linestyle','-','linewidth',lw);
%line(hTime,ones(1,T-1).*psig,'LineStyle','-.','linewidth',.5,'color','r');
%%%%%%%%%%%%%%%%%%%% Un-ccomment next 4 code lines if you need to see the gDvar and gSvar. %%%%%%%%%%%%%%%%%%%%
%plot(hTime,V.g_Dts+mean(V.MeanOrig),'color',Dcol,'linestyle','-','linewidth',lw);
%line(hTime,ones(1,T-1).*(mean(V.g_Dts)+mean(V.MeanOrig)),'LineStyle','-.','linewidth',.5,'color',Dcol)
%plot(hTime,V.g_Sts+mean(V.MeanOrig),'color',Scol,'linestyle','-','linewidth',lw);
%line(hTime,ones(1,T-1).*(mean(V.g_Sts)+mean(V.MeanOrig)),'LineStyle','-.','linewidth',.5,'color',Scol)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mx_cntrd_g_ts = max(D_Stat.DeltapDvar); mn_cntrd_g_ts = min(D_Stat.DeltapDvar);
stps = abs(round(diff([mx_cntrd_g_ts mn_cntrd_g_ts])./4.5));
Ytcks = round(mn_cntrd_g_ts:stps:mx_cntrd_g_ts);
ylabel('$\Delta\%D$-var','fontsize',lfs,'interpreter','latex')
set(sph2,'ygrid','on','xlim',[1 T-1],'ycolor','k','yTick',Ytcks)
%ytickformat('%,.2f')
axis tight
pIdx = find(D_Stat.DeltapDvar>psig);
pIdx = intersect(Idx,pIdx); %only if they are statistically sig as well!
h_pIdx=PatchMeUp(pIdx,Thickness,PsigCol);
%h_Idx=PatchMeUp(setdiff(Idx,pIdx),Thickness);
%legend([h_Idx(1) h_pIdx(1)],{'Statistically Significant','Practically Significant'},'location','northwest')
if ~isempty(pIdx) % ED
legend([h_pIdx(1)],{'Practically Significant'},'location','northwest')
end
%---------------------------The big dude%---------------------------
if BOLDFlag
Y = double(Y);
if ~isnumeric(Y) && size(Y,1)<=size(Y,2); error('Unknown BOLD intensity image!'); end
I0 = size(Y,1); T0 = size(Y,2);
%Remove voxels of zeros/NaNs-----------------
nan_idx = find(isnan(sum(Y,2)));
zeros_idx = find(sum(Y,2)==0);
idx = 1:I0;
idx([nan_idx;zeros_idx]) = [];
Y([nan_idx;zeros_idx],:) = [];
I1 = size(Y,1); %update number of voxels
if verbose; disp(['-Extra-cranial areas removed: ' num2str(size(Y,1)) 'x' num2str(size(Y,2))]); end;
% Intensity Normalisation--------
IntnstyScl = @(Y,md,scl) (Y./md)*scl;
if ~isempty(scl) && isempty(md)
md = median(mean(Y,2));
Y = IntnstyScl(Y,md,scl);
if verbose; disp(['-Intensity Normalised by ' num2str(scl) '&' num2str(md) '.']); end;
elseif ~isempty(scl) && ~isempty(md)
assert(md==1,'4D mean in scalling cannot be anything other than 1!')
Y = IntnstyScl(Y,md,scl);
if verbose; disp(['-Intensity Scaled by ' num2str(scl) '.']); end;
elseif isempty(scl) && isempty(md)
disp('-No normalisation/scaling has been set!')
else
error('Something is wrong with param re intensity normalisation')
end
%Centre the data-----------------------------
mvY = mean(Y,2);
dmeaner= repmat(mvY,[1,T0]);
Y = Y-dmeaner; clear dmeaner
if verbose; disp('-Data centred.'); end;
%--------------------------------ONLY FOR TEST-----------------
if gsrflag
%gsrflag_lab={'GSR'};
Y = fcn_GSR(Y);
if verbose; disp('-Data GSRed.'); end;
end
%--------------------------------------------------------------
sph3=subplot(nsp,1,[15 20]);
hold on; box on;
colormap(sph3,'gray');
if noColRngflag
imagesc(Y)
else
imagesc(Y,ColRng)
end
ylabel('Voxels','fontsize',lfs,'interpreter','latex')
set(sph3,'xticklabel',[])
axis tight
end
xlabel('Scans','fontsize',lfs,'interpreter','latex')
set(gcf,'Color','w');
%###################################################################################
% function T=Ticks(Ys,sph)
% % For a bunch of (Y-axis) values, find default tick locations
% % Ys - cell array of vectors to plot
% f=figure('visible','off');
% plot(Ys{1})
% hold on
% for i=2:length(Ys)
% plot(sph,Ys{i})
% end
% hold off
% T=get(gca,'Ytick');
% close(f)
% return
%###################################################################################
function T=PrettyTicks(Lim,varargin)
% For a given axis limit, find pretty tick spacing; assumes 50 is always
% in the plot (i.e. that rounded integers are always appropriate)
% Ylim - Y axis limts
%
% TEN & SA, 2017, UoW
%
MinTick=3; % Minimum number of tick locations
if ~isempty(varargin)
TickSp = [15 5 2.5 1 0.5 0.2]./varargin{1};
elseif isempty(varargin)
TickSp = [15 5 2.5 1 0.5 0.2];
end
ts=0;
T=[];
while length(T)<MinTick
ts = ts+1;
if ts>length(TickSp)
break
end
TS=TickSp(ts);
T = ceil(Lim(1)/TS)*TS : TS : floor(Lim(2)/TS)*TS;
end
return
%###################################################################################
function h=abline(a,b,varargin)
% FORMAT h = abline(a,b,...)
% Plots y=a+b*x in dotted line
% FORMAT h = abline('h',y,...)
% Plots a horizontal line at y; y can be a vector, & then multiple lines plotted
% FORMAT h = abline('v',x,...)
% Plots a vertical line at x; x can be a vector, & then multiple lines plotted
%
% ... Other graphics options, e.g. "'LineStyle','-'" or "'LineWidth',2" or
% "'color',[1 0 0]", etc
%
% Like Splus' abline. Line is plotted and then moved behind all other
% points on the graph.
%
% $Id: abline.m,v 1.1 2013/06/04 10:38:11 nichols Exp $
if (nargin==2) && ischar(a)
a = lower(a);
else
if (nargin<1)
a = 0;
end
if (nargin<2)
b = 0;
end
end
XX=get(gca,'Xlim');
YY=get(gca,'Ylim');
h_exist = get(gca,'children');
g = [];
if ischar(a) && (a=='h')
for i=1:length(b)
g=[g;line(XX,[b(i) b(i)],'LineStyle',':',varargin{:})];
end
elseif ischar(a) && (a=='v')
for i=1:length(b)
g=[g;line([b(i) b(i)],YY,'LineStyle',':',varargin{:})];
end
else
g=line(XX,a+b*XX,'LineStyle',':',varargin{:});
end
uistack(h_exist,'top');
if (nargout>0)
h=g;
end
set(gcf,'color','w');
return
%###################################################################################
function ph=PatchMeUp(Idx,varargin)
% Draws a patch across the significantly identified scans on var plots
%
% Internal function. Used in Diagnostics and DVARS plots.
%
% SA, 2017, UoW
if nargin == 1
stpjmp = 1;
Lcol = [.5 .5 .5];
elseif nargin == 2
stpjmp = varargin{1};
Lcol = [.5 .5 .5];
elseif nargin == 3
stpjmp = varargin{1};
Lcol = varargin{2};
end
yyll=ylim;
ph=[];%ED
for ii=1:numel(Idx)
xtmp=[Idx(ii)-stpjmp Idx(ii)-stpjmp Idx(ii)+stpjmp Idx(ii)+stpjmp];
ytmp=[yyll(1) yyll(2) yyll(2) yyll(1) ];
ph(ii)=patch(xtmp,ytmp,Lcol,'FaceAlpha',0.3,'edgecolor','none');
clear *tmp
end
return
%###################################################################################
function gsrY=fcn_GSR(Y)
%Global Signal Regression
%Inspired by FSLnets
%For the fMRIDiag, it needs to be transposed.
%
% SA, 2017, UoW
%
Y = Y';
mgrot = mean(Y,2);
gsrY = Y-(mgrot*(pinv(mgrot)*Y));
gsrY = gsrY';