forked from cisco-ie/telegraf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram.go
348 lines (285 loc) · 9.04 KB
/
histogram.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
package histogram
import (
"sort"
"strconv"
"github.com/influxdata/telegraf"
"github.com/influxdata/telegraf/plugins/aggregators"
)
// bucketRightTag is the tag, which contains right bucket border
const bucketRightTag = "le"
// bucketPosInf is the right bucket border for infinite values
const bucketPosInf = "+Inf"
// bucketLeftTag is the tag, which contains left bucket border (exclusive)
const bucketLeftTag = "gt"
// bucketNegInf is the left bucket border for infinite values
const bucketNegInf = "-Inf"
// HistogramAggregator is aggregator with histogram configs and particular histograms for defined metrics
type HistogramAggregator struct {
Configs []config `toml:"config"`
ResetBuckets bool `toml:"reset"`
Cumulative bool `toml:"cumulative"`
buckets bucketsByMetrics
cache map[uint64]metricHistogramCollection
}
// config is the config, which contains name, field of metric and histogram buckets.
type config struct {
Metric string `toml:"measurement_name"`
Fields []string `toml:"fields"`
Buckets buckets `toml:"buckets"`
}
// bucketsByMetrics contains the buckets grouped by metric and field name
type bucketsByMetrics map[string]bucketsByFields
// bucketsByFields contains the buckets grouped by field name
type bucketsByFields map[string]buckets
// buckets contains the right borders buckets
type buckets []float64
// metricHistogramCollection aggregates the histogram data
type metricHistogramCollection struct {
histogramCollection map[string]counts
name string
tags map[string]string
}
// counts is the number of hits in the bucket
type counts []int64
// groupedByCountFields contains grouped fields by their count and fields values
type groupedByCountFields struct {
name string
tags map[string]string
fieldsWithCount map[string]int64
}
// NewHistogramAggregator creates new histogram aggregator
func NewHistogramAggregator() *HistogramAggregator {
h := &HistogramAggregator{
Cumulative: true,
}
h.buckets = make(bucketsByMetrics)
h.resetCache()
return h
}
var sampleConfig = `
## The period in which to flush the aggregator.
period = "30s"
## If true, the original metric will be dropped by the
## aggregator and will not get sent to the output plugins.
drop_original = false
## If true, the histogram will be reset on flush instead
## of accumulating the results.
reset = false
## Whether bucket values should be accumulated. If set to false, "gt" tag will be added.
## Defaults to true.
cumulative = true
## Example config that aggregates all fields of the metric.
# [[aggregators.histogram.config]]
# ## Right borders of buckets (with +Inf implicitly added).
# buckets = [0.0, 15.6, 34.5, 49.1, 71.5, 80.5, 94.5, 100.0]
# ## The name of metric.
# measurement_name = "cpu"
## Example config that aggregates only specific fields of the metric.
# [[aggregators.histogram.config]]
# ## Right borders of buckets (with +Inf implicitly added).
# buckets = [0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
# ## The name of metric.
# measurement_name = "diskio"
# ## The concrete fields of metric
# fields = ["io_time", "read_time", "write_time"]
`
// SampleConfig returns sample of config
func (h *HistogramAggregator) SampleConfig() string {
return sampleConfig
}
// Description returns description of aggregator plugin
func (h *HistogramAggregator) Description() string {
return "Create aggregate histograms."
}
// Add adds new hit to the buckets
func (h *HistogramAggregator) Add(in telegraf.Metric) {
bucketsByField := make(map[string][]float64)
for field := range in.Fields() {
buckets := h.getBuckets(in.Name(), field)
if buckets != nil {
bucketsByField[field] = buckets
}
}
if len(bucketsByField) == 0 {
return
}
id := in.HashID()
agr, ok := h.cache[id]
if !ok {
agr = metricHistogramCollection{
name: in.Name(),
tags: in.Tags(),
histogramCollection: make(map[string]counts),
}
}
for field, value := range in.Fields() {
if buckets, ok := bucketsByField[field]; ok {
if agr.histogramCollection[field] == nil {
agr.histogramCollection[field] = make(counts, len(buckets)+1)
}
if value, ok := convert(value); ok {
index := sort.SearchFloat64s(buckets, value)
agr.histogramCollection[field][index]++
}
}
}
h.cache[id] = agr
}
// Push returns histogram values for metrics
func (h *HistogramAggregator) Push(acc telegraf.Accumulator) {
metricsWithGroupedFields := []groupedByCountFields{}
for _, aggregate := range h.cache {
for field, counts := range aggregate.histogramCollection {
h.groupFieldsByBuckets(&metricsWithGroupedFields, aggregate.name, field, copyTags(aggregate.tags), counts)
}
}
for _, metric := range metricsWithGroupedFields {
acc.AddFields(metric.name, makeFieldsWithCount(metric.fieldsWithCount), metric.tags)
}
}
// groupFieldsByBuckets groups fields by metric buckets which are represented as tags
func (h *HistogramAggregator) groupFieldsByBuckets(
metricsWithGroupedFields *[]groupedByCountFields,
name string,
field string,
tags map[string]string,
counts []int64,
) {
sum := int64(0)
buckets := h.getBuckets(name, field) // note that len(buckets) + 1 == len(counts)
for index, count := range counts {
if !h.Cumulative {
sum = 0 // reset sum -> don't store cumulative counts
tags[bucketLeftTag] = bucketNegInf
if index > 0 {
tags[bucketLeftTag] = strconv.FormatFloat(buckets[index-1], 'f', -1, 64)
}
}
tags[bucketRightTag] = bucketPosInf
if index < len(buckets) {
tags[bucketRightTag] = strconv.FormatFloat(buckets[index], 'f', -1, 64)
}
sum += count
h.groupField(metricsWithGroupedFields, name, field, sum, copyTags(tags))
}
}
// groupField groups field by count value
func (h *HistogramAggregator) groupField(
metricsWithGroupedFields *[]groupedByCountFields,
name string,
field string,
count int64,
tags map[string]string,
) {
for key, metric := range *metricsWithGroupedFields {
if name == metric.name && isTagsIdentical(tags, metric.tags) {
(*metricsWithGroupedFields)[key].fieldsWithCount[field] = count
return
}
}
fieldsWithCount := map[string]int64{
field: count,
}
*metricsWithGroupedFields = append(
*metricsWithGroupedFields,
groupedByCountFields{name: name, tags: tags, fieldsWithCount: fieldsWithCount},
)
}
// Reset does nothing by default, because we typically need to collect counts for a long time.
// Otherwise if config parameter 'reset' has 'true' value, we will get a histogram
// with a small amount of the distribution. However in some use cases a reset is useful.
func (h *HistogramAggregator) Reset() {
if h.ResetBuckets {
h.resetCache()
h.buckets = make(bucketsByMetrics)
}
}
// resetCache resets cached counts(hits) in the buckets
func (h *HistogramAggregator) resetCache() {
h.cache = make(map[uint64]metricHistogramCollection)
}
// getBuckets finds buckets and returns them
func (h *HistogramAggregator) getBuckets(metric string, field string) []float64 {
if buckets, ok := h.buckets[metric][field]; ok {
return buckets
}
for _, config := range h.Configs {
if config.Metric == metric {
if !isBucketExists(field, config) {
continue
}
if _, ok := h.buckets[metric]; !ok {
h.buckets[metric] = make(bucketsByFields)
}
h.buckets[metric][field] = sortBuckets(config.Buckets)
}
}
return h.buckets[metric][field]
}
// isBucketExists checks if buckets exists for the passed field
func isBucketExists(field string, cfg config) bool {
if len(cfg.Fields) == 0 {
return true
}
for _, fl := range cfg.Fields {
if fl == field {
return true
}
}
return false
}
// sortBuckets sorts the buckets if it is needed
func sortBuckets(buckets []float64) []float64 {
for i, bucket := range buckets {
if i < len(buckets)-1 && bucket >= buckets[i+1] {
sort.Float64s(buckets)
break
}
}
return buckets
}
// convert converts interface to concrete type
func convert(in interface{}) (float64, bool) {
switch v := in.(type) {
case float64:
return v, true
case int64:
return float64(v), true
default:
return 0, false
}
}
// copyTags copies tags
func copyTags(tags map[string]string) map[string]string {
copiedTags := map[string]string{}
for key, val := range tags {
copiedTags[key] = val
}
return copiedTags
}
// isTagsIdentical checks the identity of two list of tags
func isTagsIdentical(originalTags, checkedTags map[string]string) bool {
if len(originalTags) != len(checkedTags) {
return false
}
for tagName, tagValue := range originalTags {
if tagValue != checkedTags[tagName] {
return false
}
}
return true
}
// makeFieldsWithCount assigns count value to all metric fields
func makeFieldsWithCount(fieldsWithCountIn map[string]int64) map[string]interface{} {
fieldsWithCountOut := map[string]interface{}{}
for field, count := range fieldsWithCountIn {
fieldsWithCountOut[field+"_bucket"] = count
}
return fieldsWithCountOut
}
// init initializes histogram aggregator plugin
func init() {
aggregators.Add("histogram", func() telegraf.Aggregator {
return NewHistogramAggregator()
})
}