-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptimize.py
1992 lines (1725 loc) · 62.3 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#__docformat__ = "restructuredtext en"
# ******NOTICE***************
# optimize.py module by Travis E. Oliphant
#
# You may copy and use this module as you see fit with no
# guarantee implied provided you keep this notice in all copies.
# *****END NOTICE************
# A collection of optimization algorithms. Version 0.5
# CHANGES
# Added fminbound (July 2001)
# Added brute (Aug. 2002)
# Finished line search satisfying strong Wolfe conditions (Mar. 2004)
# Updated strong Wolfe conditions line search to use cubic-interpolation (Mar. 2004)
# Minimization routines
__all__ = ['fmin', 'fmin_powell','fmin_bfgs', 'fmin_ncg', 'fmin_cg',
'fminbound','brent', 'golden','bracket','rosen','rosen_der',
'rosen_hess', 'rosen_hess_prod', 'brute', 'approx_fprime',
'line_search', 'check_grad']
__docformat__ = "restructuredtext en"
import numpy
from numpy import atleast_1d, eye, mgrid, argmin, zeros, shape, empty, \
squeeze, vectorize, asarray, absolute, sqrt, Inf, asfarray, isinf
#import linesearch
# These have been copied from Numeric's MLab.py
# I don't think they made the transition to scipy_core
def max(m,axis=0):
"""max(m,axis=0) returns the maximum of m along dimension axis.
"""
m = asarray(m)
return numpy.maximum.reduce(m,axis)
def min(m,axis=0):
"""min(m,axis=0) returns the minimum of m along dimension axis.
"""
m = asarray(m)
return numpy.minimum.reduce(m,axis)
abs = absolute
import builtins
pymin = builtins.min
pymax = builtins.max
__version__="0.7"
_epsilon = sqrt(numpy.finfo(float).eps)
def vecnorm(x, ord=2):
if ord == Inf:
return numpy.amax(abs(x))
elif ord == -Inf:
return numpy.amin(abs(x))
else:
return numpy.sum(abs(x)**ord,axis=0)**(1.0/ord)
def rosen(x): # The Rosenbrock function
x = asarray(x)
return numpy.sum(100.0*(x[1:]-x[:-1]**2.0)**2.0 + (1-x[:-1])**2.0,axis=0)
def rosen_der(x):
x = asarray(x)
xm = x[1:-1]
xm_m1 = x[:-2]
xm_p1 = x[2:]
der = numpy.zeros_like(x)
der[1:-1] = 200*(xm-xm_m1**2) - 400*(xm_p1 - xm**2)*xm - 2*(1-xm)
der[0] = -400*x[0]*(x[1]-x[0]**2) - 2*(1-x[0])
der[-1] = 200*(x[-1]-x[-2]**2)
return der
def rosen_hess(x):
x = atleast_1d(x)
H = numpy.diag(-400*x[:-1],1) - numpy.diag(400*x[:-1],-1)
diagonal = numpy.zeros(len(x), dtype=x.dtype)
diagonal[0] = 1200*x[0]-400*x[1]+2
diagonal[-1] = 200
diagonal[1:-1] = 202 + 1200*x[1:-1]**2 - 400*x[2:]
H = H + numpy.diag(diagonal)
return H
def rosen_hess_prod(x,p):
x = atleast_1d(x)
Hp = numpy.zeros(len(x), dtype=x.dtype)
Hp[0] = (1200*x[0]**2 - 400*x[1] + 2)*p[0] - 400*x[0]*p[1]
Hp[1:-1] = -400*x[:-2]*p[:-2]+(202+1200*x[1:-1]**2-400*x[2:])*p[1:-1] \
-400*x[1:-1]*p[2:]
Hp[-1] = -400*x[-2]*p[-2] + 200*p[-1]
return Hp
def wrap_function(function, args):
ncalls = [0]
def function_wrapper(x):
ncalls[0] += 1
return function(x, *args)
return ncalls, function_wrapper
def fmin(func, x0, args=(), xtol=1e-4, ftol=1e-4, maxiter=None, maxfun=None,
full_output=0, disp=1, retall=0, callback=None):
"""Minimize a function using the downhill simplex algorithm.
:Parameters:
func : callable func(x,*args)
The objective function to be minimized.
x0 : ndarray
Initial guess.
args : tuple
Extra arguments passed to func, i.e. ``f(x,*args)``.
callback : callable
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
:Returns: (xopt, {fopt, iter, funcalls, warnflag})
xopt : ndarray
Parameter that minimizes function.
fopt : float
Value of function at minimum: ``fopt = func(xopt)``.
iter : int
Number of iterations performed.
funcalls : int
Number of function calls made.
warnflag : int
1 : Maximum number of function evaluations made.
2 : Maximum number of iterations reached.
allvecs : list
Solution at each iteration.
*Other Parameters*:
xtol : float
Relative error in xopt acceptable for convergence.
ftol : number
Relative error in func(xopt) acceptable for convergence.
maxiter : int
Maximum number of iterations to perform.
maxfun : number
Maximum number of function evaluations to make.
full_output : bool
Set to True if fval and warnflag outputs are desired.
disp : bool
Set to True to print convergence messages.
retall : bool
Set to True to return list of solutions at each iteration.
:Notes:
Uses a Nelder-Mead simplex algorithm to find the minimum of
function of one or more variables.
"""
fcalls, func = wrap_function(func, args)
x0 = asfarray(x0).flatten()
N = len(x0)
rank = len(x0.shape)
if not -1 < rank < 2:
raise ValueError
if maxiter is None:
maxiter = N * 200
if maxfun is None:
maxfun = N * 200
rho = 1; chi = 2; psi = 0.5; sigma = 0.5;
one2np1 = list(range(1,N+1))
if rank == 0:
sim = numpy.zeros((N+1,), dtype=x0.dtype)
else:
sim = numpy.zeros((N+1,N), dtype=x0.dtype)
fsim = numpy.zeros((N+1,), float)
sim[0] = x0
if retall:
allvecs = [sim[0]]
fsim[0] = func(x0)
nonzdelt = 0.05
zdelt = 0.00025
for k in range(0,N):
y = numpy.array(x0,copy=True)
if y[k] != 0:
y[k] = (1+nonzdelt)*y[k]
else:
y[k] = zdelt
sim[k+1] = y
f = func(y)
fsim[k+1] = f
ind = numpy.argsort(fsim)
fsim = numpy.take(fsim,ind,0)
# sort so sim[0,:] has the lowest function value
sim = numpy.take(sim,ind,0)
iterations = 1
while (fcalls[0] < maxfun and iterations < maxiter):
if (max(numpy.ravel(abs(sim[1:]-sim[0]))) <= xtol \
and max(abs(fsim[0]-fsim[1:])) <= ftol):
break
xbar = numpy.add.reduce(sim[:-1],0) / N
xr = (1+rho)*xbar - rho*sim[-1]
fxr = func(xr)
doshrink = 0
if fxr < fsim[0]:
xe = (1+rho*chi)*xbar - rho*chi*sim[-1]
fxe = func(xe)
if fxe < fxr:
sim[-1] = xe
fsim[-1] = fxe
else:
sim[-1] = xr
fsim[-1] = fxr
else: # fsim[0] <= fxr
if fxr < fsim[-2]:
sim[-1] = xr
fsim[-1] = fxr
else: # fxr >= fsim[-2]
# Perform contraction
if fxr < fsim[-1]:
xc = (1+psi*rho)*xbar - psi*rho*sim[-1]
fxc = func(xc)
if fxc <= fxr:
sim[-1] = xc
fsim[-1] = fxc
else:
doshrink=1
else:
# Perform an inside contraction
xcc = (1-psi)*xbar + psi*sim[-1]
fxcc = func(xcc)
if fxcc < fsim[-1]:
sim[-1] = xcc
fsim[-1] = fxcc
else:
doshrink = 1
if doshrink:
for j in one2np1:
sim[j] = sim[0] + sigma*(sim[j] - sim[0])
fsim[j] = func(sim[j])
ind = numpy.argsort(fsim)
sim = numpy.take(sim,ind,0)
fsim = numpy.take(fsim,ind,0)
if callback is not None:
callback(sim[0])
iterations += 1
if retall:
allvecs.append(sim[0])
x = sim[0]
fval = min(fsim)
warnflag = 0
# if fcalls[0] >= maxfun:
# warnflag = 1
# if disp:
# print "Warning: Maximum number of function evaluations has "\
# "been exceeded."
# elif iterations >= maxiter:
# warnflag = 2
# if disp:
# print "Warning: Maximum number of iterations has been exceeded"
# else:
# if disp:
# print "Optimization terminated successfully."
# print " Current function value: %f" % fval
# print " Iterations: %d" % iterations
# print " Function evaluations: %d" % fcalls[0]
if full_output:
retlist = x, fval, iterations, fcalls[0], warnflag
if retall:
retlist += (allvecs,)
else:
retlist = x
if retall:
retlist = (x, allvecs)
return retlist
def _cubicmin(a,fa,fpa,b,fb,c,fc):
# finds the minimizer for a cubic polynomial that goes through the
# points (a,fa), (b,fb), and (c,fc) with derivative at a of fpa.
#
# if no minimizer can be found return None
#
# f(x) = A *(x-a)^3 + B*(x-a)^2 + C*(x-a) + D
C = fpa
D = fa
db = b-a
dc = c-a
if (db == 0) or (dc == 0) or (b==c): return None
denom = (db*dc)**2 * (db-dc)
d1 = empty((2,2))
d1[0,0] = dc**2
d1[0,1] = -db**2
d1[1,0] = -dc**3
d1[1,1] = db**3
[A,B] = numpy.dot(d1,asarray([fb-fa-C*db,fc-fa-C*dc]).flatten())
A /= denom
B /= denom
radical = B*B-3*A*C
if radical < 0: return None
if (A == 0): return None
xmin = a + (-B + sqrt(radical))/(3*A)
return xmin
def _quadmin(a,fa,fpa,b,fb):
# finds the minimizer for a quadratic polynomial that goes through
# the points (a,fa), (b,fb) with derivative at a of fpa
# f(x) = B*(x-a)^2 + C*(x-a) + D
D = fa
C = fpa
db = b-a*1.0
if (db==0): return None
B = (fb-D-C*db)/(db*db)
if (B <= 0): return None
xmin = a - C / (2.0*B)
return xmin
def zoom(a_lo, a_hi, phi_lo, phi_hi, derphi_lo,
phi, derphi, phi0, derphi0, c1, c2):
maxiter = 10
i = 0
delta1 = 0.2 # cubic interpolant check
delta2 = 0.1 # quadratic interpolant check
phi_rec = phi0
a_rec = 0
while 1:
# interpolate to find a trial step length between a_lo and a_hi
# Need to choose interpolation here. Use cubic interpolation and then if the
# result is within delta * dalpha or outside of the interval bounded by a_lo or a_hi
# then use quadratic interpolation, if the result is still too close, then use bisection
dalpha = a_hi-a_lo;
if dalpha < 0: a,b = a_hi,a_lo
else: a,b = a_lo, a_hi
# minimizer of cubic interpolant
# (uses phi_lo, derphi_lo, phi_hi, and the most recent value of phi)
# if the result is too close to the end points (or out of the interval)
# then use quadratic interpolation with phi_lo, derphi_lo and phi_hi
# if the result is stil too close to the end points (or out of the interval)
# then use bisection
if (i > 0):
cchk = delta1*dalpha
a_j = _cubicmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi, a_rec, phi_rec)
if (i==0) or (a_j is None) or (a_j > b-cchk) or (a_j < a+cchk):
qchk = delta2*dalpha
a_j = _quadmin(a_lo, phi_lo, derphi_lo, a_hi, phi_hi)
if (a_j is None) or (a_j > b-qchk) or (a_j < a+qchk):
a_j = a_lo + 0.5*dalpha
# print "Using bisection."
# else: print "Using quadratic."
# else: print "Using cubic."
# Check new value of a_j
phi_aj = phi(a_j)
if (phi_aj > phi0 + c1*a_j*derphi0) or (phi_aj >= phi_lo):
phi_rec = phi_hi
a_rec = a_hi
a_hi = a_j
phi_hi = phi_aj
else:
derphi_aj = derphi(a_j)
if abs(derphi_aj) <= -c2*derphi0:
a_star = a_j
val_star = phi_aj
valprime_star = derphi_aj
break
if derphi_aj*(a_hi - a_lo) >= 0:
phi_rec = phi_hi
a_rec = a_hi
a_hi = a_lo
phi_hi = phi_lo
else:
phi_rec = phi_lo
a_rec = a_lo
a_lo = a_j
phi_lo = phi_aj
derphi_lo = derphi_aj
i += 1
if (i > maxiter):
a_star = a_j
val_star = phi_aj
valprime_star = None
break
return a_star, val_star, valprime_star
def line_search(f, myfprime, xk, pk, gfk, old_fval, old_old_fval,
args=(), c1=1e-4, c2=0.9, amax=50):
"""Find alpha that satisfies strong Wolfe conditions.
:Parameters:
f : callable f(x,*args)
Objective function.
myfprime : callable f'(x,*args)
Objective function gradient (can be None).
xk : ndarray
Starting point.
pk : ndarray
Search direction.
gfk : ndarray
Gradient value for x=xk (xk being the current parameter
estimate).
args : tuple
Additional arguments passed to objective function.
c1 : float
Parameter for Armijo condition rule.
c2 : float
Parameter for curvature condition rule.
:Returns:
alpha0 : float
Alpha for which ``x_new = x0 + alpha * pk``.
fc : int
Number of function evaluations made.
gc : int
Number of gradient evaluations made.
:Notes:
Uses the line search algorithm to enforce strong Wolfe
conditions. See Wright and Nocedal, 'Numerical Optimization',
1999, pg. 59-60.
For the zoom phase it uses an algorithm by [...].
"""
global _ls_fc, _ls_gc, _ls_ingfk
_ls_fc = 0
_ls_gc = 0
_ls_ingfk = None
def phi(alpha):
global _ls_fc
_ls_fc += 1
return f(xk+alpha*pk,*args)
if isinstance(myfprime,type(())):
def phiprime(alpha):
global _ls_fc, _ls_ingfk
_ls_fc += len(xk)+1
eps = myfprime[1]
fprime = myfprime[0]
newargs = (f,eps) + args
_ls_ingfk = fprime(xk+alpha*pk,*newargs) # store for later use
return numpy.dot(_ls_ingfk,pk)
else:
fprime = myfprime
def phiprime(alpha):
global _ls_gc, _ls_ingfk
_ls_gc += 1
_ls_ingfk = fprime(xk+alpha*pk,*args) # store for later use
return numpy.dot(_ls_ingfk,pk)
alpha0 = 0
phi0 = old_fval
derphi0 = numpy.dot(gfk,pk)
alpha1 = pymin(1.0,1.01*2*(phi0-old_old_fval)/derphi0)
if alpha1 == 0:
# This shouldn't happen. Perhaps the increment has slipped below
# machine precision? For now, set the return variables skip the
# useless while loop, and raise warnflag=2 due to possible imprecision.
alpha_star = None
fval_star = old_fval
old_fval = old_old_fval
fprime_star = None
phi_a1 = phi(alpha1)
#derphi_a1 = phiprime(alpha1) evaluated below
phi_a0 = phi0
derphi_a0 = derphi0
i = 1
maxiter = 10
while 1: # bracketing phase
if alpha1 == 0:
break
if (phi_a1 > phi0 + c1*alpha1*derphi0) or \
((phi_a1 >= phi_a0) and (i > 1)):
alpha_star, fval_star, fprime_star = \
zoom(alpha0, alpha1, phi_a0,
phi_a1, derphi_a0, phi, phiprime,
phi0, derphi0, c1, c2)
break
derphi_a1 = phiprime(alpha1)
if (abs(derphi_a1) <= -c2*derphi0):
alpha_star = alpha1
fval_star = phi_a1
fprime_star = derphi_a1
break
if (derphi_a1 >= 0):
alpha_star, fval_star, fprime_star = \
zoom(alpha1, alpha0, phi_a1,
phi_a0, derphi_a1, phi, phiprime,
phi0, derphi0, c1, c2)
break
alpha2 = 2 * alpha1 # increase by factor of two on each iteration
i = i + 1
alpha0 = alpha1
alpha1 = alpha2
phi_a0 = phi_a1
phi_a1 = phi(alpha1)
derphi_a0 = derphi_a1
# stopping test if lower function not found
if (i > maxiter):
alpha_star = alpha1
fval_star = phi_a1
fprime_star = None
break
if fprime_star is not None:
# fprime_star is a number (derphi) -- so use the most recently
# calculated gradient used in computing it derphi = gfk*pk
# this is the gradient at the next step no need to compute it
# again in the outer loop.
fprime_star = _ls_ingfk
return alpha_star, _ls_fc, _ls_gc, fval_star, old_fval, fprime_star
def line_search_BFGS(f, xk, pk, gfk, old_fval, args=(), c1=1e-4, alpha0=1):
"""Minimize over alpha, the function ``f(xk+alpha pk)``.
Uses the interpolation algorithm (Armiijo backtracking) as suggested by
Wright and Nocedal in 'Numerical Optimization', 1999, pg. 56-57
:Returns: (alpha, fc, gc)
"""
xk = atleast_1d(xk)
fc = 0
phi0 = old_fval # compute f(xk) -- done in past loop
phi_a0 = f(*((xk+alpha0*pk,)+args))
fc = fc + 1
derphi0 = numpy.dot(gfk,pk)
if (phi_a0 <= phi0 + c1*alpha0*derphi0):
return alpha0, fc, 0, phi_a0
# Otherwise compute the minimizer of a quadratic interpolant:
alpha1 = -(derphi0) * alpha0**2 / 2.0 / (phi_a0 - phi0 - derphi0 * alpha0)
phi_a1 = f(*((xk+alpha1*pk,)+args))
fc = fc + 1
if (phi_a1 <= phi0 + c1*alpha1*derphi0):
return alpha1, fc, 0, phi_a1
# Otherwise loop with cubic interpolation until we find an alpha which
# satifies the first Wolfe condition (since we are backtracking, we will
# assume that the value of alpha is not too small and satisfies the second
# condition.
while 1: # we are assuming pk is a descent direction
factor = alpha0**2 * alpha1**2 * (alpha1-alpha0)
a = alpha0**2 * (phi_a1 - phi0 - derphi0*alpha1) - \
alpha1**2 * (phi_a0 - phi0 - derphi0*alpha0)
a = a / factor
b = -alpha0**3 * (phi_a1 - phi0 - derphi0*alpha1) + \
alpha1**3 * (phi_a0 - phi0 - derphi0*alpha0)
b = b / factor
alpha2 = (-b + numpy.sqrt(abs(b**2 - 3 * a * derphi0))) / (3.0*a)
phi_a2 = f(*((xk+alpha2*pk,)+args))
fc = fc + 1
if (phi_a2 <= phi0 + c1*alpha2*derphi0):
return alpha2, fc, 0, phi_a2
if (alpha1 - alpha2) > alpha1 / 2.0 or (1 - alpha2/alpha1) < 0.96:
alpha2 = alpha1 / 2.0
alpha0 = alpha1
alpha1 = alpha2
phi_a0 = phi_a1
phi_a1 = phi_a2
def approx_fprime(xk,f,epsilon,*args):
f0 = f(*((xk,)+args))
grad = numpy.zeros((len(xk),), float)
ei = numpy.zeros((len(xk),), float)
for k in range(len(xk)):
ei[k] = epsilon
grad[k] = (f(*((xk+ei,)+args)) - f0)/epsilon
ei[k] = 0.0
return grad
def check_grad(func, grad, x0, *args):
return sqrt(sum((grad(x0,*args)-approx_fprime(x0,func,_epsilon,*args))**2))
def approx_fhess_p(x0,p,fprime,epsilon,*args):
f2 = fprime(*((x0+epsilon*p,)+args))
f1 = fprime(*((x0,)+args))
return (f2 - f1)/epsilon
def fmin_bfgs(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf,
epsilon=_epsilon, maxiter=None, full_output=0, disp=1,
retall=0, callback=None):
"""Minimize a function using the BFGS algorithm.
:Parameters:
f : callable f(x,*args)
Objective function to be minimized.
x0 : ndarray
Initial guess.
fprime : callable f'(x,*args)
Gradient of f.
args : tuple
Extra arguments passed to f and fprime.
gtol : float
Gradient norm must be less than gtol before succesful termination.
norm : float
Order of norm (Inf is max, -Inf is min)
epsilon : int or ndarray
If fprime is approximated, use this value for the step size.
callback : callable
An optional user-supplied function to call after each
iteration. Called as callback(xk), where xk is the
current parameter vector.
:Returns: (xopt, {fopt, gopt, Hopt, func_calls, grad_calls, warnflag}, <allvecs>)
xopt : ndarray
Parameters which minimize f, i.e. f(xopt) == fopt.
fopt : float
Minimum value.
gopt : ndarray
Value of gradient at minimum, f'(xopt), which should be near 0.
Bopt : ndarray
Value of 1/f''(xopt), i.e. the inverse hessian matrix.
func_calls : int
Number of function_calls made.
grad_calls : int
Number of gradient calls made.
warnflag : integer
1 : Maximum number of iterations exceeded.
2 : Gradient and/or function calls not changing.
allvecs : list
Results at each iteration. Only returned if retall is True.
*Other Parameters*:
maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True,return fopt, func_calls, grad_calls, and warnflag
in addition to xopt.
disp : bool
Print convergence message if True.
retall : bool
Return a list of results at each iteration if True.
:Notes:
Optimize the function, f, whose gradient is given by fprime
using the quasi-Newton method of Broyden, Fletcher, Goldfarb,
and Shanno (BFGS) See Wright, and Nocedal 'Numerical
Optimization', 1999, pg. 198.
*See Also*:
scikits.openopt : SciKit which offers a unified syntax to call
this and other solvers.
"""
x0 = asarray(x0).squeeze()
if x0.ndim == 0:
x0.shape = (1,)
if maxiter is None:
maxiter = len(x0)*200
func_calls, f = wrap_function(f, args)
if fprime is None:
grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon))
else:
grad_calls, myfprime = wrap_function(fprime, args)
gfk = myfprime(x0)
k = 0
N = len(x0)
I = numpy.eye(N,dtype=int)
Hk = I
old_fval = f(x0)
old_old_fval = old_fval + 5000
xk = x0
if retall:
allvecs = [x0]
sk = [2*gtol]
warnflag = 0
gnorm = vecnorm(gfk,ord=norm)
while (gnorm > gtol) and (k < maxiter):
pk = -numpy.dot(Hk,gfk)
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
linesearch.line_search(f,myfprime,xk,pk,gfk,
old_fval,old_old_fval)
if alpha_k is None: # line search failed try different one.
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
line_search(f,myfprime,xk,pk,gfk,
old_fval,old_old_fval)
if alpha_k is None:
# This line search also failed to find a better solution.
warnflag = 2
break
xkp1 = xk + alpha_k * pk
if retall:
allvecs.append(xkp1)
sk = xkp1 - xk
xk = xkp1
if gfkp1 is None:
gfkp1 = myfprime(xkp1)
yk = gfkp1 - gfk
gfk = gfkp1
if callback is not None:
callback(xk)
k += 1
gnorm = vecnorm(gfk,ord=norm)
if (gnorm <= gtol):
break
try: # this was handled in numeric, let it remaines for more safety
rhok = 1.0 / (numpy.dot(yk,sk))
except ZeroDivisionError:
rhok = 1000.0
print("Divide-by-zero encountered: rhok assumed large")
if isinf(rhok): # this is patch for numpy
rhok = 1000.0
print("Divide-by-zero encountered: rhok assumed large")
A1 = I - sk[:,numpy.newaxis] * yk[numpy.newaxis,:] * rhok
A2 = I - yk[:,numpy.newaxis] * sk[numpy.newaxis,:] * rhok
Hk = numpy.dot(A1,numpy.dot(Hk,A2)) + rhok * sk[:,numpy.newaxis] \
* sk[numpy.newaxis,:]
if disp or full_output:
fval = old_fval
if warnflag == 2:
if disp:
print("Warning: Desired error not necessarily achieved" \
"due to precision loss")
print(" Current function value: %f" % fval)
print(" Iterations: %d" % k)
print(" Function evaluations: %d" % func_calls[0])
print(" Gradient evaluations: %d" % grad_calls[0])
elif k >= maxiter:
warnflag = 1
if disp:
print("Warning: Maximum number of iterations has been exceeded")
print(" Current function value: %f" % fval)
print(" Iterations: %d" % k)
print(" Function evaluations: %d" % func_calls[0])
print(" Gradient evaluations: %d" % grad_calls[0])
else:
if disp:
print("Optimization terminated successfully.")
print(" Current function value: %f" % fval)
print(" Iterations: %d" % k)
print(" Function evaluations: %d" % func_calls[0])
print(" Gradient evaluations: %d" % grad_calls[0])
if full_output:
retlist = xk, fval, gfk, Hk, func_calls[0], grad_calls[0], warnflag
if retall:
retlist += (allvecs,)
else:
retlist = xk
if retall:
retlist = (xk, allvecs)
return retlist
def fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, epsilon=_epsilon,
maxiter=None, full_output=0, disp=1, retall=0, callback=None):
"""Minimize a function using a nonlinear conjugate gradient algorithm.
:Parameters:
f : callable f(x,*args)
Objective function to be minimized.
x0 : ndarray
Initial guess.
fprime : callable f'(x,*args)
Function which computes the gradient of f.
args : tuple
Extra arguments passed to f and fprime.
gtol : float
Stop when norm of gradient is less than gtol.
norm : float
Order of vector norm to use. -Inf is min, Inf is max.
epsilon : float or ndarray
If fprime is approximated, use this value for the step
size (can be scalar or vector).
callback : callable
An optional user-supplied function, called after each
iteration. Called as callback(xk), where xk is the
current parameter vector.
:Returns: (xopt, {fopt, func_calls, grad_calls, warnflag}, {allvecs})
xopt : ndarray
Parameters which minimize f, i.e. f(xopt) == fopt.
fopt : float
Minimum value found, f(xopt).
func_calls : int
The number of function_calls made.
grad_calls : int
The number of gradient calls made.
warnflag : int
1 : Maximum number of iterations exceeded.
2 : Gradient and/or function calls not changing.
allvecs : ndarray
If retall is True (see other parameters below), then this
vector containing the result at each iteration is returned.
*Other Parameters*:
maxiter : int
Maximum number of iterations to perform.
full_output : bool
If True then return fopt, func_calls, grad_calls, and
warnflag in addition to xopt.
disp : bool
Print convergence message if True.
retall : bool
return a list of results at each iteration if True.
:Notes:
Optimize the function, f, whose gradient is given by fprime
using the nonlinear conjugate gradient algorithm of Polak and
Ribiere See Wright, and Nocedal 'Numerical Optimization',
1999, pg. 120-122.
"""
x0 = asarray(x0).flatten()
if maxiter is None:
maxiter = len(x0)*200
func_calls, f = wrap_function(f, args)
if fprime is None:
grad_calls, myfprime = wrap_function(approx_fprime, (f, epsilon))
else:
grad_calls, myfprime = wrap_function(fprime, args)
gfk = myfprime(x0)
k = 0
N = len(x0)
xk = x0
old_fval = f(xk)
old_old_fval = old_fval + 5000
if retall:
allvecs = [xk]
sk = [2*gtol]
warnflag = 0
pk = -gfk
gnorm = vecnorm(gfk,ord=norm)
while (gnorm > gtol) and (k < maxiter):
deltak = numpy.dot(gfk,gfk)
# These values are modified by the line search, even if it fails
old_fval_backup = old_fval
old_old_fval_backup = old_old_fval
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
linesearch.line_search(f,myfprime,xk,pk,gfk,old_fval,
old_old_fval,c2=0.4)
if alpha_k is None: # line search failed -- use different one.
alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \
line_search(f,myfprime,xk,pk,gfk,
old_fval_backup,old_old_fval_backup)
if alpha_k is None or alpha_k == 0:
# This line search also failed to find a better solution.
warnflag = 2
break
xk = xk + alpha_k*pk
if retall:
allvecs.append(xk)
if gfkp1 is None:
gfkp1 = myfprime(xk)
yk = gfkp1 - gfk
beta_k = pymax(0,numpy.dot(yk,gfkp1)/deltak)
pk = -gfkp1 + beta_k * pk
gfk = gfkp1
gnorm = vecnorm(gfk,ord=norm)
if callback is not None:
callback(xk)
k += 1
if disp or full_output:
fval = old_fval
if warnflag == 2:
if disp:
print("Warning: Desired error not necessarily achieved due to precision loss")
print(" Current function value: %f" % fval)
print(" Iterations: %d" % k)
print(" Function evaluations: %d" % func_calls[0])
print(" Gradient evaluations: %d" % grad_calls[0])
elif k >= maxiter:
warnflag = 1
if disp:
print("Warning: Maximum number of iterations has been exceeded")
print(" Current function value: %f" % fval)
print(" Iterations: %d" % k)
print(" Function evaluations: %d" % func_calls[0])
print(" Gradient evaluations: %d" % grad_calls[0])
else:
if disp:
print("Optimization terminated successfully.")
print(" Current function value: %f" % fval)
print(" Iterations: %d" % k)
print(" Function evaluations: %d" % func_calls[0])
print(" Gradient evaluations: %d" % grad_calls[0])
if full_output:
retlist = xk, fval, func_calls[0], grad_calls[0], warnflag
if retall:
retlist += (allvecs,)
else:
retlist = xk
if retall:
retlist = (xk, allvecs)
return retlist
def fmin_ncg(f, x0, fprime, fhess_p=None, fhess=None, args=(), avextol=1e-5,
epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0,
callback=None):
"""Minimize a function using the Newton-CG method.
:Parameters:
f : callable f(x,*args)
Objective function to be minimized.
x0 : ndarray
Initial guess.
fprime : callable f'(x,*args)
Gradient of f.
fhess_p : callable fhess_p(x,p,*args)
Function which computes the Hessian of f times an
arbitrary vector, p.
fhess : callable fhess(x,*args)
Function to compute the Hessian matrix of f.
args : tuple
Extra arguments passed to f, fprime, fhess_p, and fhess
(the same set of extra arguments is supplied to all of
these functions).
epsilon : float or ndarray
If fhess is approximated, use this value for the step size.
callback : callable
An optional user-supplied function which is called after
each iteration. Called as callback(xk), where xk is the
current parameter vector.
:Returns: (xopt, {fopt, fcalls, gcalls, hcalls, warnflag},{allvecs})
xopt : ndarray
Parameters which minimizer f, i.e. ``f(xopt) == fopt``.
fopt : float
Value of the function at xopt, i.e. ``fopt = f(xopt)``.
fcalls : int
Number of function calls made.
gcalls : int
Number of gradient calls made.
hcalls : int
Number of hessian calls made.
warnflag : int
Warnings generated by the algorithm.
1 : Maximum number of iterations exceeded.
allvecs : list
The result at each iteration, if retall is True (see below).
*Other Parameters*: