-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain_inpaintnet.py
executable file
·190 lines (180 loc) · 6.26 KB
/
train_inpaintnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import click
from DatasetManager.dataset_manager import DatasetManager
from DatasetManager.the_session.folk_dataset import FolkDataset
from DatasetManager.metadata import TickMetadata, BeatMarkerMetadata
from MeasureVAE.measure_vae import MeasureVAE
from LatentRNN.latent_rnn import LatentRNN
from LatentRNN.latent_rnn_trainer import LatentRNNTrainer
from LatentRNN.latent_rnn_tester import LatentRNNTester
from MeasureVAE.vae_tester import *
from utils.helpers import *
@click.command()
@click.option('--note_embedding_dim', default=10,
help='size of the note embeddings')
@click.option('--metadata_embedding_dim', default=2,
help='size of the metadata embeddings')
@click.option('--num_encoder_layers', default=2,
help='number of layers in encoder RNN')
@click.option('--encoder_hidden_size', default=512,
help='hidden size of the encoder RNN')
@click.option('--encoder_dropout_prob', default=0.5,
help='float, amount of dropout prob between encoder RNN layers')
@click.option('--has_metadata', default=True,
help='bool, True if data contains metadata')
@click.option('--latent_space_dim', default=256,
help='int, dimension of latent space parameters')
@click.option('--num_decoder_layers', default=2,
help='int, number of layers in decoder RNN')
@click.option('--decoder_hidden_size', default=512,
help='int, hidden size of the decoder RNN')
@click.option('--decoder_dropout_prob', default=0.5,
help='float, amount got dropout prob between decoder RNN layers')
@click.option('--num_latent_rnn_layers', default=2,
help='number of layers in measure RNN')
@click.option('--latent_rnn_hidden_size', default=512,
help='hidden size of the measure RNN')
@click.option('--latent_rnn_dropout_prob', default=0.5,
help='float, amount of dropout prob between measure RNN layers')
@click.option('--batch_size', default=32,
help='training batch size')
@click.option('--num_epochs', default=100,
help='number of training epochs')
@click.option('--train/--test', default=True,
help='train or retrain the specified model')
@click.option('--lr', default=1e-4,
help='learning rate')
@click.option('--plot/--no_plot', default=False,
help='plot the training log')
@click.option('--log/--no_log', default=True,
help='log the results for tensorboard')
@click.option('--auto_reg/--no_auto_reg', default=True,
help='select if the model should be auto-regressive')
@click.option('--teacher_forcing/--no_teacher_forcing', default=True,
help='select if the model should use teacher forcing for training')
@click.option('--early_stop/--no_early_stop', default=False,
help='select if early stopping is to be used')
def main(note_embedding_dim,
metadata_embedding_dim,
num_encoder_layers,
encoder_hidden_size,
encoder_dropout_prob,
latent_space_dim,
num_decoder_layers,
decoder_hidden_size,
decoder_dropout_prob,
has_metadata,
num_latent_rnn_layers,
latent_rnn_hidden_size,
latent_rnn_dropout_prob,
batch_size,
num_epochs,
train,
lr,
plot,
log,
auto_reg,
teacher_forcing,
early_stop
):
# init dataset
dataset_manager = DatasetManager()
metadatas = [
BeatMarkerMetadata(subdivision=6),
TickMetadata(subdivision=6)
]
mvae_train_kwargs = {
'metadatas': metadatas,
'sequences_size': 32,
'num_bars': 16,
'train': True
}
folk_dataset_vae: FolkDataset = dataset_manager.get_dataset(
name='folk_4by4nbars_train',
**mvae_train_kwargs
)
# init vae model
vae_model = MeasureVAE(
dataset=folk_dataset_vae,
note_embedding_dim=note_embedding_dim,
metadata_embedding_dim=metadata_embedding_dim,
num_encoder_layers=num_encoder_layers,
encoder_hidden_size=encoder_hidden_size,
encoder_dropout_prob=encoder_dropout_prob,
latent_space_dim=latent_space_dim,
num_decoder_layers=num_decoder_layers,
decoder_hidden_size=decoder_hidden_size,
decoder_dropout_prob=decoder_dropout_prob,
has_metadata=has_metadata
)
vae_model.load() # VAE model must be pre-trained
folk_train_kwargs = {
'metadatas': metadatas,
'sequences_size': 32,
'num_bars': 16,
'train': True
}
folk_test_kwargs = {
'metadatas': metadatas,
'sequences_size': 32,
'num_bars': 16,
'train': False
}
folk_dataset_train: FolkDataset = dataset_manager.get_dataset(
name='folk_4by4nbars_train',
**folk_train_kwargs
)
folk_dataset_test: FolkDataset = dataset_manager.get_dataset(
name='folk_4by4nbars_train',
**folk_test_kwargs
)
# init latent_rnn model
model = LatentRNN(
dataset=folk_dataset_train,
vae_model=vae_model,
num_rnn_layers=num_latent_rnn_layers,
rnn_hidden_size=latent_rnn_hidden_size,
dropout=latent_rnn_dropout_prob,
rnn_class=torch.nn.GRU,
auto_reg=auto_reg,
teacher_forcing=teacher_forcing
)
if train:
if torch.cuda.is_available():
model.cuda()
trainer = LatentRNNTrainer(
dataset=folk_dataset_train,
model=model,
lr=lr,
early_stopping=early_stop
)
trainer.train_model(
batch_size=batch_size,
num_epochs=num_epochs,
plot=plot,
log=log
)
else:
model.load()
model.cuda()
model.eval()
tester = LatentRNNTester(
dataset=folk_dataset_test,
model=model
)
tester.test_model(
batch_size=batch_size
)
'''
gen_score, _, original_score = tester.generation_random(
tensor_score=None,
start_measure=8,
num_measures_gen=2
)
gen_score.show()
original_score.show()
gen_score2, _, original_score2 = tester.generation_test()
gen_score2.show()
original_score2.show()
'''
if __name__ == '__main__':
main()