-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorflow_utils.mm
231 lines (201 loc) · 7.98 KB
/
tensorflow_utils.mm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#import <Foundation/Foundation.h>
#include "tensorflow_utils.h"
#include <pthread.h>
#include <unistd.h>
#include <fstream>
#include <queue>
#include <sstream>
#include <string>
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/io/zero_copy_stream_impl_lite.h"
#include "google/protobuf/message_lite.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/types.pb.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/types.h"
#include "tensorflow/core/public/session.h"
namespace {
// Helper class used to load protobufs efficiently.
class IfstreamInputStream : public ::google::protobuf::io::CopyingInputStream {
public:
explicit IfstreamInputStream(const std::string& file_name)
: ifs_(file_name.c_str(), std::ios::in | std::ios::binary) {}
~IfstreamInputStream() { ifs_.close(); }
int Read(void* buffer, int size) {
if (!ifs_) {
return -1;
}
ifs_.read(static_cast<char*>(buffer), size);
return ifs_.gcount();
}
private:
std::ifstream ifs_;
};
} // namespace
// Returns the top N confidence values over threshold in the provided vector,
// sorted by confidence in descending order.
void GetTopN(const Eigen::TensorMap<Eigen::Tensor<float, 1, Eigen::RowMajor>,
Eigen::Aligned>& prediction,
const int num_results, const float threshold,
std::vector<std::pair<float, int> >* top_results) {
// Will contain top N results in ascending order.
std::priority_queue<std::pair<float, int>,
std::vector<std::pair<float, int> >,
std::greater<std::pair<float, int> > >
top_result_pq;
const int count = prediction.size();
for (int i = 0; i < count; ++i) {
const float value = prediction(i);
// Only add it if it beats the threshold and has a chance at being in
// the top N.
if (value < threshold) {
continue;
}
top_result_pq.push(std::pair<float, int>(value, i));
// If at capacity, kick the smallest value out.
if (top_result_pq.size() > num_results) {
top_result_pq.pop();
}
}
// Copy to output vector and reverse into descending order.
while (!top_result_pq.empty()) {
top_results->push_back(top_result_pq.top());
top_result_pq.pop();
}
std::reverse(top_results->begin(), top_results->end());
}
bool PortableReadFileToProto(const std::string& file_name,
::google::protobuf::MessageLite* proto) {
::google::protobuf::io::CopyingInputStreamAdaptor stream(
new IfstreamInputStream(file_name));
stream.SetOwnsCopyingStream(true);
::google::protobuf::io::CodedInputStream coded_stream(&stream);
// Total bytes hard limit / warning limit are set to 1GB and 512MB
// respectively.
coded_stream.SetTotalBytesLimit(1024LL << 20, 512LL << 20);
return proto->ParseFromCodedStream(&coded_stream);
}
NSString* FilePathForResourceName(NSString* name, NSString* extension) {
NSString* file_path =
[[NSBundle mainBundle] pathForResource:name ofType:extension];
if (file_path == NULL) {
LOG(FATAL) << "Couldn't find '" << [name UTF8String] << "."
<< [extension UTF8String] << "' in bundle.";
return nullptr;
}
return file_path;
}
tensorflow::Status LoadModel(NSString* file_name, NSString* file_type,
std::unique_ptr<tensorflow::Session>* session) {
tensorflow::SessionOptions options;
tensorflow::Session* session_pointer = nullptr;
tensorflow::Status session_status =
tensorflow::NewSession(options, &session_pointer);
if (!session_status.ok()) {
LOG(ERROR) << "Could not create TensorFlow Session: " << session_status;
return session_status;
}
session->reset(session_pointer);
tensorflow::GraphDef tensorflow_graph;
NSString* model_path = FilePathForResourceName(file_name, file_type);
if (!model_path) {
LOG(ERROR) << "Failed to find model proto at" << [file_name UTF8String]
<< [file_type UTF8String];
return tensorflow::errors::NotFound([file_name UTF8String],
[file_type UTF8String]);
}
const bool read_proto_succeeded =
PortableReadFileToProto([model_path UTF8String], &tensorflow_graph);
if (!read_proto_succeeded) {
LOG(ERROR) << "Failed to load model proto from" << [model_path UTF8String];
return tensorflow::errors::NotFound([model_path UTF8String]);
}
tensorflow::Status create_status = (*session)->Create(tensorflow_graph);
if (!create_status.ok()) {
LOG(ERROR) << "Could not create TensorFlow Graph: " << create_status;
return create_status;
}
return tensorflow::Status::OK();
}
tensorflow::Status LoadMemoryMappedModel(
NSString* file_name, NSString* file_type,
std::unique_ptr<tensorflow::Session>* session,
std::unique_ptr<tensorflow::MemmappedEnv>* memmapped_env) {
NSString* network_path = FilePathForResourceName(file_name, file_type);
memmapped_env->reset(
new tensorflow::MemmappedEnv(tensorflow::Env::Default()));
tensorflow::Status mmap_status =
(memmapped_env->get())->InitializeFromFile([network_path UTF8String]);
if (!mmap_status.ok()) {
LOG(ERROR) << "MMap failed with " << mmap_status.error_message();
return mmap_status;
}
tensorflow::GraphDef tensorflow_graph;
tensorflow::Status load_graph_status = ReadBinaryProto(
memmapped_env->get(),
tensorflow::MemmappedFileSystem::kMemmappedPackageDefaultGraphDef,
&tensorflow_graph);
if (!load_graph_status.ok()) {
LOG(ERROR) << "MMap load graph failed with "
<< load_graph_status.error_message();
return load_graph_status;
}
tensorflow::SessionOptions options;
// Disable optimizations on this graph so that constant folding doesn't
// increase the memory footprint by creating new constant copies of the weight
// parameters.
options.config.mutable_graph_options()
->mutable_optimizer_options()
->set_opt_level(::tensorflow::OptimizerOptions::L0);
options.env = memmapped_env->get();
tensorflow::Session* session_pointer = nullptr;
tensorflow::Status session_status =
tensorflow::NewSession(options, &session_pointer);
if (!session_status.ok()) {
LOG(ERROR) << "Could not create TensorFlow Session: " << session_status;
return session_status;
}
tensorflow::Status create_status = session_pointer->Create(tensorflow_graph);
if (!create_status.ok()) {
LOG(ERROR) << "Could not create TensorFlow Graph: " << create_status;
return create_status;
}
session->reset(session_pointer);
return tensorflow::Status::OK();
}
tensorflow::Status LoadLabels(NSString* file_name, NSString* file_type,
std::vector<std::string>* label_strings) {
// Read the label list
NSString* labels_path = FilePathForResourceName(file_name, file_type);
if (!labels_path) {
LOG(ERROR) << "Failed to find model proto at" << [file_name UTF8String]
<< [file_type UTF8String];
return tensorflow::errors::NotFound([file_name UTF8String],
[file_type UTF8String]);
}
std::ifstream t;
t.open([labels_path UTF8String]);
std::string line;
while (t) {
std::getline(t, line);
label_strings->push_back(line);
}
t.close();
return tensorflow::Status::OK();
}