-
Notifications
You must be signed in to change notification settings - Fork 0
/
tensorflow_utils.h
52 lines (44 loc) · 2.49 KB
/
tensorflow_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef TENSORFLOW_CONTRIB_IOS_EXAMPLES_CAMERA_TENSORFLOW_UTILS_H_
#define TENSORFLOW_CONTRIB_IOS_EXAMPLES_CAMERA_TENSORFLOW_UTILS_H_
#include <memory>
#include <vector>
#include "tensorflow/core/public/session.h"
#include "tensorflow/core/util/memmapped_file_system.h"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
// Reads a serialized GraphDef protobuf file from the bundle, typically
// created with the freeze_graph script. Populates the session argument with a
// Session object that has the model loaded.
tensorflow::Status LoadModel(NSString* file_name, NSString* file_type,
std::unique_ptr<tensorflow::Session>* session);
// Loads a model from a file that has been created using the
// convert_graphdef_memmapped_format tool. This bundles together a GraphDef
// proto together with a file that can be memory-mapped, containing the weight
// parameters for the model. This is useful because it reduces the overall
// memory pressure, since the read-only parameter regions can be easily paged
// out and don't count toward memory limits on iOS.
tensorflow::Status LoadMemoryMappedModel(
NSString* file_name, NSString* file_type,
std::unique_ptr<tensorflow::Session>* session,
std::unique_ptr<tensorflow::MemmappedEnv>* memmapped_env);
// Takes a text file with a single label on each line, and returns a list.
tensorflow::Status LoadLabels(NSString* file_name, NSString* file_type,
std::vector<std::string>* label_strings);
// Sorts the results from a model execution, and returns the highest scoring.
void GetTopN(const Eigen::TensorMap<Eigen::Tensor<float, 1, Eigen::RowMajor>,
Eigen::Aligned>& prediction,
const int num_results, const float threshold,
std::vector<std::pair<float, int> >* top_results);
#endif // TENSORFLOW_CONTRIB_IOS_EXAMPLES_CAMERA_TENSORFLOW_UTILS_H_