forked from caomw/icra2017-visual-navigation-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·180 lines (146 loc) · 6.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import threading
import numpy as np
import signal
import random
import os
from network import ActorCriticFFNetwork
from training_thread import A3CTrainingThread
from utils.ops import log_uniform
from utils.rmsprop_applier import RMSPropApplier
from constants import ACTION_SIZE
from constants import PARALLEL_SIZE
from constants import INITIAL_ALPHA_LOW
from constants import INITIAL_ALPHA_HIGH
from constants import INITIAL_ALPHA_LOG_RATE
from constants import MAX_TIME_STEP
from constants import CHECKPOINT_DIR
from constants import LOG_FILE
from constants import RMSP_EPSILON
from constants import RMSP_ALPHA
from constants import GRAD_NORM_CLIP
from constants import USE_GPU
from constants import TASK_TYPE
from constants import TASK_LIST
if __name__ == '__main__':
device = "/gpu:0" if USE_GPU else "/cpu:0"
network_scope = TASK_TYPE
list_of_tasks = TASK_LIST
scene_scopes = list_of_tasks.keys()
global_t = 0
stop_requested = False
if not os.path.exists(CHECKPOINT_DIR):
os.mkdir(CHECKPOINT_DIR)
initial_learning_rate = log_uniform(INITIAL_ALPHA_LOW,
INITIAL_ALPHA_HIGH,
INITIAL_ALPHA_LOG_RATE)
global_network = ActorCriticFFNetwork(action_size = ACTION_SIZE,
device = device,
network_scope = network_scope,
scene_scopes = scene_scopes)
branches = []
for scene in scene_scopes:
for task in list_of_tasks[scene]:
branches.append((scene, task))
NUM_TASKS = len(branches)
assert PARALLEL_SIZE >= NUM_TASKS, \
"Not enough threads for multitasking: at least {} threads needed.".format(NUM_TASKS)
learning_rate_input = tf.placeholder("float")
grad_applier = RMSPropApplier(learning_rate = learning_rate_input,
decay = RMSP_ALPHA,
momentum = 0.0,
epsilon = RMSP_EPSILON,
clip_norm = GRAD_NORM_CLIP,
device = device)
# instantiate each training thread
# each thread is training for one target in one scene
training_threads = []
for i in range(PARALLEL_SIZE):
scene, task = branches[i%NUM_TASKS]
training_thread = A3CTrainingThread(i, global_network, initial_learning_rate,
learning_rate_input,
grad_applier, MAX_TIME_STEP,
device = device,
network_scope = "thread-%d"%(i+1),
scene_scope = scene,
task_scope = task)
training_threads.append(training_thread)
# prepare session
sess = tf.Session(config=tf.ConfigProto(log_device_placement=False,
allow_soft_placement=True))
init = tf.global_variables_initializer()
sess.run(init)
# create tensorboard summaries
summary_op = dict()
summary_placeholders = dict()
for i in range(PARALLEL_SIZE):
scene, task = branches[i%NUM_TASKS]
key = scene + "-" + task
# summary for tensorboard
episode_reward_input = tf.placeholder("float")
episode_length_input = tf.placeholder("float")
episode_max_q_input = tf.placeholder("float")
scalar_summaries = [
tf.summary.scalar(key+"/Episode Reward", episode_reward_input),
tf.summary.scalar(key+"/Episode Length", episode_length_input),
tf.summary.scalar(key+"/Episode Max Q", episode_max_q_input)
]
summary_op[key] = tf.summary.merge(scalar_summaries)
summary_placeholders[key] = {
"episode_reward_input": episode_reward_input,
"episode_length_input": episode_length_input,
"episode_max_q_input": episode_max_q_input,
"learning_rate_input": learning_rate_input
}
summary_writer = tf.summary.FileWriter(LOG_FILE, sess.graph)
# init or load checkpoint with saver
# if you don't need to be able to resume training, use the next line instead.
# it will result in a much smaller checkpoint file.
# saver = tf.train.Saver(max_to_keep=10, var_list=global_network.get_vars())
saver = tf.train.Saver(max_to_keep=10)
checkpoint = tf.train.get_checkpoint_state(CHECKPOINT_DIR)
if checkpoint and checkpoint.model_checkpoint_path:
saver.restore(sess, checkpoint.model_checkpoint_path)
print("checkpoint loaded: {}".format(checkpoint.model_checkpoint_path))
tokens = checkpoint.model_checkpoint_path.split("-")
# set global step
global_t = int(tokens[1])
print(">>> global step set: {}".format(global_t))
else:
print("Could not find old checkpoint")
def train_function(parallel_index):
global global_t
training_thread = training_threads[parallel_index]
last_global_t = 0
scene, task = branches[parallel_index % NUM_TASKS]
key = scene + "-" + task
while global_t < MAX_TIME_STEP and not stop_requested:
diff_global_t = training_thread.process(sess, global_t, summary_writer,
summary_op[key], summary_placeholders[key])
global_t += diff_global_t
# periodically save checkpoints to disk
if parallel_index == 0 and global_t - last_global_t > 1000000:
print('Save checkpoint at timestamp %d' % global_t)
saver.save(sess, CHECKPOINT_DIR + '/' + 'checkpoint', global_step = global_t)
last_global_t = global_t
def signal_handler(signal, frame):
global stop_requested
print('You pressed Ctrl+C!')
stop_requested = True
train_threads = []
for i in range(PARALLEL_SIZE):
train_threads.append(threading.Thread(target=train_function, args=(i,)))
signal.signal(signal.SIGINT, signal_handler)
# start each training thread
for t in train_threads:
t.start()
print('Press Ctrl+C to stop.')
signal.pause()
# wait for all threads to finish
for t in train_threads:
t.join()
print('Now saving data. Please wait.')
saver.save(sess, CHECKPOINT_DIR + '/' + 'checkpoint', global_step = global_t)
summary_writer.close()