-
Notifications
You must be signed in to change notification settings - Fork 1
/
brainmovie.m
974 lines (906 loc) · 39.6 KB
/
brainmovie.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
%brainmovie() - generate a sequence of images showing event-related coherence,
% event-related spectral perturbations, and inter-trial coherence
% of localized EEG waveforms. Uses outputs of timef() and cross().
%Usage:
% >> brainmovie(ersps,itcs,crossfs_amp,crossfs_phase,times,freqs,selected,...
% 'keyword1',value1,...); % creates files image0001.eps, etc.
%
%Inputs:
% ersps - Cell array (components,conditions) of ERSP arrays (freqs,times)
% ERSP = event-related spectral perturbation; returned by timef()
% itcs - Cell array (components,conditions) of ITC arrays (freqs,times)
% ITC = inter-trial coherence; returned by timef()
% crossfs_amp - Cell array (components,components,conditions) of crossf()
% amplitude output arrays of size (freqs,times).
% crossfs_phase - Cell array (components,components,conditions) of crossf() phase
% output arrays of size (freqs,times). (Only the upper diagonal part
% of the matrix is taken into account).
% times - Array of times returned by timef() or crossf()
% freqs - Indices into the array of freqs returned by timef() or crossf()
% (e.g., [1:2] means plot the mean of the first two frequencies).
% These indexes determine for which freqs plotting will be performed.
% selected - Component indices to plot (default all)
%
%Optional 'keyword' parameters:
% 'latency' - plot only a subset of latencies. The time point closest to the
% latency given are plotted. Default = empty, all latencies.
% 'frames' - vector of frame indices to compute
% 'resolution'- ['low' or 'high'], 'high' -> multiply the size of the image by 3
% for subsequent antialiasing and high quality movie generation
% {default: 'low'}
% 'framesout' - ['eps'|'ppm'|'fig'] Default format for saving frames on disk. Default is '.eps'.
% 'rt' - cell array of vector containing reaction times of the subject in
% each conditions (default {} -> ignored)
% 'rthistloc' - location and size of rt histograms in individual axes.
% [abscissa ordinate width maxheight].
% 'square' - ['on'|'off'] re-square all coordinates (so X and Y width is the same)
% default is 'on';
% 'magnify' - integer magnification factor for graphics. Default is 1.
% 'size' - [widthcond height] output image size {default [400,400]}
% widthcond is the width of a single condition plot (in pixels)
% 'head' - [FILENAME], plot the head background image using .pcx image in FILENAME
% 'polarity' - ['pos'|'posneg'] polarity for ITC and crossf. 'pos' = only positive values
% 'posneg' = positive and negative values.
% 'visible' - ['on'|'off'] show the images on the screen or keep them hidden {default 'on'}
% 'mesh' - ['on'|'off'] show mesh of radius one.
%
% Movie ITC, Power and Crossf options:
% 'power' - ['on'|'off'] vary the size of the component disks according to spectral power
% {default: on}
% 'itc' - ['on'|'off'] vary component disk colors according to inter-trial coherence
% {default: on}
% 'crossf' - ['on'|'off'] plot | do not plot coherence {default: on}
% 'crossfcoh' - ['on'|'off'] vary the width of the connecting arc
% according to cross-coherence magnitude {def: on}
% 'crossfphasecolor' -['on'|'off'] vary the arc color according to coherence {default: on}
% 'crossfphasespeed' - ['on'|'off'] vary the arc speed according to
% cross-coherence phase {def: on}
% 'crossfphaseunit' - ['degree'|'radian']. Coherence phase angle unit {Default is degree}.
% 'colmapcrossf' - colormap array for arcs {default: hsv(64) with green as 0}
% 'colmapcoh' - colormap array for disks (according to inter-trial coherence)
% {default: hot(64)}
% 'scalepower' - [min max] dB range for power (and disk size) variation {default: [-5 5]}
% 'scalecoher' - [min max] coherence range {default: [0 1]}
% 'diskscale' - numeric value that scales the size of disks {default: [1.0]}
%
% Movie coordinates and axis options
% 'xlimaxes' - x-axis limits axis for the component locations {default: [-1 1]}
% 'ylimaxes' - y-axis limits axis for the component locations {default: [-1 to 1]}
% 'coordinates' - 2-column array of [x y] coordinates of the selected components
% {default: spaced evenly around the head circle boundary}
% 'circfactor' - (ncomps,ncomps) array of arc curvatures (0=straight; 1=half-round,
% positive or negative values give the sense of rotation) {def: 0s}
% 'envelope' - (2,points,conditions) envelopes of the average data (ERP) in each condition
% (envelope = min and max traces of each ERP across all channels and times)
% 'envylabel' - ordinate label for envelope. {Default 'Potential \muV'}
% 'envvert' - cell array of time indices at which to draw vertical lines.
% Can also be a cell array of cell to specify line aspect. For instance
% { { 0 'color' 'b' 'linewidth' 2 } {1000 'color' 'r' }} would draw two
% lines, one blue thick line at latency 0 and one thin red line at latency 1000.
% 'flashes' - vector of time indices at which the background flashes. Specify the color
% of the flash with a cell array of [1,2] cell arrays.
% Ex. { { 200 'y' } { 1500 '5' }} will generate two flashes,
% yellow at 200 ms and red at 1500 ms
% 'title' - (string) main movie title
% 'condtitle' - (string array) condition titles (one condition title per row)
% 'condtitleformat' - list of title properties. Ex: { 'fontize', 12, 'fontweight', 'bold' }
% 'plotorder' - [integer vector] component plot order from 1 to the number of selected
% components.
%
%Outputs to disk:
% imageX - brainmovie() saves a sequence of image files to disk (image0001.eps, ...)
%
%Example:
%
% % Given ICA activations in array icaact (size ncomps,nframes,ntrials), animate (here)
% % activity at/between two components at 176 points per epoch (from -100 ms to 600 ms
% % re stimulus onset) assuming a 250-Hz sampling rate and 100 output frames
%
% >> [ersps{1,1},itcs{1,1},powbase,times,freqs] = ... % timef for
% timef(icaact(1,:),176,[-100 600],'Component 1',250,1,32,100); % 1st comp
% >> [ersps{2,1},itcs{2,1},powbase,times,freqs] = ... % timef for
% timef(icaact(2,:),176,[-100 600],'Component 2',250,1,32,100); % 2nd comp
% >> [crossfs_amp{1,2},mcoh,times,freqs,cohboot,crossfs_phase{1,2}] = ... % crossf for
% crossf_(icaact(1,:),icaact(2,:),176,[-100 600],'Crossf 1 and 2',250,1,32,100); % both
%
% >> brainmovie( ersps, itcs, crossfs_amp, crossfs_phase, times, [1:2] ); % makes files in pwd
% image0001.eps, ... image0100.eps
%
% >> !/usr/local/bin/convert images*.eps movie.mpg % Now use ImageMagic 'convert'
% % to generate the movie.
%
% Note: Better resolution movies can be generated by .eps -> .ppm -> .avi,
% (or, under a planned upgrade to brainmovie, from Matlab6 to .avi directly).
% [email protected], Arnaud Delorme, CNL / Salk Institute, 2001
% This program is free software; you can redistribute it and/or
% modify it.
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
function alltimepoints = brainmovie(ALLERSP,ALLITC,ALLCROSSF,ALLCROSSFANGLE,times,FREQS,selected,varargin);
if nargin < 6
help brainmovie;
return;
end;
% create structure for option if necessary
%-----------------------------------------
if ~isempty( varargin ),
for index=1:length(varargin)
if iscell(varargin{index})
varargin{index} = { varargin{index}};
end;
end;
g=struct(varargin{:});
else
g= [];
end;
if nargin < 7
selected = 1:size(ALLERSP, 1);
end;
nbconditions = size(ALLERSP,2);
nbcomponents = size(ALLERSP,1);
% add defaults
%-------------
try, g.head; catch, g.head=''; end;
try, g.visible; catch, g.visible='on'; end;
try, g.square; catch, g.square='on'; end;
try, g.resolution; catch, g.resolution='low'; end;
try, g.rt; catch, g.rt={}; end;
try, g.power; catch, g.power='on'; end;
try, g.latency; catch, g.latency=[]; end;
try, g.itc; catch, g.itc='on'; end;
try, g.magnify; catch, g.magnify=1; end;
try, g.crossf; catch, g.crossf='on'; end;
try, g.crossfcoh; catch, g.crossfcoh='on'; end;
try, g.size; catch, g.size=[400 400]; end;
try, g.crossfphasecolor;catch, g.crossfphasecolor='on'; end;
try, g.crossfphasespeed;catch, g.crossfphasespeed='on'; end;
try, g.crossfphaseunit; catch, g.crossfphaseunit='degree'; end;
try, g.scalepower; catch, g.scalepower = [-5 5]; end;
try, g.scalecoher; catch, g.scalecoher = [0 1]; end;
try, g.diskscale; catch, g.diskscale = 1; end;
try, g.envelope; catch, g.envelope = []; end;
try, g.caption; catch, g.caption = 'on'; end;
try, g.frames; catch, g.frames = []; end;
try, g.envvert; catch, g.envvert = {}; end;
try, g.flashes; catch, g.flashes = []; end;
try, g.mesh; catch, g.mesh = 'off'; end;
try, g.polarity; catch, g.polarity = 'pos'; end;
try, g.framesout; catch, g.framesout = 'eps'; end;
try, g.condtitle; catch, g.condtitle = []; end;
try, g.condtitleformat; catch, g.condtitleformat = {'fontsize', 14', 'fontweight', 'bold' }; end;
try, g.title; catch, g.title = []; end;
try, g.envylabel; catch, g.envylabel = 'Potential \muV'; end;
try, g.plotorder; catch, g.plotorder = selected; end;
try, g.colmapcoh; catch,
colormtmp = hot(64);
colormtmp(end,3) = (colormtmp(end,3)+colormtmp(end-1,3))/2; % white does not come out when the
g.colmapcoh = colormtmp; % the figure is printed to ppm
g.colmapcoh(:,1) = colormtmp(:,2);
g.colmapcoh(:,2) = colormtmp(:,3);
g.colmapcoh(:,3) = colormtmp(:,1);
g.colmapcoh = [ g.colmapcoh; colormtmp(end:-1:1,:)];
end;
try, g.colmapcrossf; catch,
g.colmapcrossf = jet(64);
%g.colmapcrossf = hsv(64);
%g.colmapcrossf = [ g.colmapcrossf(55:end,:);
%g.colmapcrossf(1:54,:)]; g.colmapcrossf = g.colmapcrossf(linspace(64, 1, 64),:); % reorganize the colormap
%g.colmapcrossf = hsv(64);
%g.colmapcrossf = [g.colmapcrossf(16:end,:); g.colmapcrossf(1:5,:)];
end;
try, g.xlimaxes; catch, g.xlimaxes = [-1 1]; end;
try, g.ylimaxes; catch, g.ylimaxes = [-1 1]; end;
try, g.rthistloc; catch, g.rthistloc(1) = (g.xlimaxes(2)-g.xlimaxes(1))*0.74 + g.xlimaxes(1); % abscicia
g.rthistloc(3) = (g.xlimaxes(2)-g.xlimaxes(1))*0.1; % width
g.rthistloc(2) = (g.ylimaxes(2)-g.ylimaxes(1))*0.34 + g.ylimaxes(1); % ordinate
g.rthistloc(4) = (g.ylimaxes(2)-g.ylimaxes(1))*0.1; % max height
end;
try, g.coordinates; catch,
% coordinates around a circle
g.coordinates = zeros( nbcomponents, 2 );
count = 0;
for index = selected
if length(selected) > 1
g.coordinates( index,:) = [ cos(count/length(selected)*2*pi) sin(count/length(selected)*2*pi) ] * 0.7;
else g.coordinates( index,:) = [ 0.01 0.01];
end;
count = count + 1;
end;
end;
try, g.circfactor; catch, g.circfactor = ones( nbcomponents, nbcomponents )*0.01; end;
if isempty(g.circfactor), g.circfactor = ones( nbcomponents, nbcomponents )*0.01; end;
% check size of inputs
% --------------------
try
if ~all(size(ALLERSP) == size(ALLITC))
disp('Error: ERSP and ITC cells array must be the same size'); return;
end;
if ~isempty(ALLCROSSF)
if ~all(size(ALLCROSSF) == size(ALLCROSSFANGLE))
disp('Error: Crossf amplitude and Crossf angle cells array must be the same size'); return;
end;
if ~(size(ALLCROSSF,2) == size(ALLERSP,1))
disp('Error: number of components different in ERSP and Crossf arrays'); return;
end;
if ~(size(ALLCROSSF,3) == size(ALLERSP,2))
disp('Error: number of conditions different in ERSP and Crossf arrays'); return;
end;
if ~(size(ALLCROSSF{1,2,1},1) == size(ALLERSP{1,1},1))
disp('Error: number of frequencies (rows) different in ERSP and Crossf arrays'); return;
end;
if ~(size(ALLCROSSFANGLE{1,2,1},2) == size(ALLITC{1,1},2))
disp('Error: number of time points (columns) different in ERSP and Crossf arrays'); return;
end;
if ~(size(ALLCROSSF{1,2,1},2) == length(times))
disp('Error: number of time points (columns) different in times and Crossf arrays'); return;
end;
end;
try, tmp = ALLERSP{1,1}; tmp(FREQS,:); catch, disp('Error: unable to access the defined frequencies in ERSPs (out of bounds) '); return; end;
try, ALLERSP{selected,1};
catch, disp('Error: unable to access the defined components in ERSPs (out of bounds)'); return; end;
catch
disp('Error accessing one of the variable. Remember: Except for selected, freqs, times and circfactor, all vars are cell arrays. Check also: dimensions and content.'); return;
end;
% check structure content
% -----------------------
if ~isempty(g.rt)
if length(g.rt) ~= nbconditions
disp('Error: Rt must be either an array of the size of the number of conditions (might be 0 for some conditions)'); return;
end;
end;
switch lower(g.resolution)
case {'low', 'high'} ;
otherwise disp('Error: Resolution must be either ''low'' or ''high'''); return;
end;
switch lower(g.visible)
case {'on', 'off'} ;
otherwise disp('Error: Visibility must be either ''on'' or ''off'''); return;
end;
switch lower(g.square)
case {'on', 'off'} ;
otherwise disp('Error: Square must be either ''on'' or ''off'''); return;
end;
switch lower(g.power)
case {'on', 'off'} ;
otherwise disp('Error: Power must be either ''on'' or ''off'''); return;
end;
switch lower(g.itc)
case {'on', 'off'} ;
otherwise disp('Error: Itc must be either ''on'' or ''off'''); return;
end;
switch lower(g.mesh)
case {'on', 'off'} ;
otherwise disp('Error: Mesh must be either ''on'' or ''off'''); return;
end;
switch lower(g.crossf)
case {'on', 'off'} ;
otherwise disp('Error: Crossf must be either ''on'' or ''off'''); return;
end;
switch lower(g.crossfcoh)
case {'on', 'off'} ;
otherwise disp('Error: Crossfcoh must be either ''on'' or ''off'''); return;
end;
switch lower(g.crossfphasecolor)
case {'on', 'off'} ;
otherwise disp('Error: Crossfphasecolor must be either ''on'' or ''off'''); return;
end;
switch lower(g.crossfphasespeed)
case {'on', 'off'} ;
otherwise disp('Error: Crossfphasespeed must be either ''on'' or ''off'''); return;
end;
switch lower(g.crossfphaseunit)
case {'degree', 'radian'} ;
otherwise disp('Error: Crossfphaseunit must be either ''degree'' or ''radian'''); return;
end;
switch lower(g.caption)
case {'on', 'off'} ;
otherwise disp('Error: Caption must be either ''on'' or ''off'''); return;
end;
switch lower(g.polarity)
case {'pos', 'posneg'} ;
otherwise disp('Error: Polarity must be either ''pos'' or ''posneg'''); return;
end;
switch lower(g.framesout)
case {'eps', 'fig', 'ppm'} ;
otherwise disp('Error: Framesout must be either ''eps'', ''ppm'' or ''fig'''); return;
end;
if ~isempty(g.envvert),
if ~iscell(g.envvert) & ~( isstruct(g.envvert{1}) | isnumeric(g.envvert{1}) )
disp('Error: Invalid type for Envvert.'); return;
end
end
if ~isempty(g.latency) & ~isnumeric(g.latency)
disp('Error: Latency must be a vector'); return;
end;
if length(g.scalepower) ~= 2
disp('Error: Scalepower must be a 2-element array'); return;
end;
if length(g.scalecoher) ~= 2
disp('Error: Scalecoher must be a 2-element array'); return;
end;
if (length(g.diskscale) ~= 1 | g.diskscale < 0)
disp('Error: Diskscale must be a scalar value >= 0.'); return;
end
if size(g.colmapcoh,2) ~= 3
disp('Error: Colmapcoh must be a colormap (3 columns)'); return;
end;
if size(g.colmapcrossf,2) ~= 3
disp('Error: Colmapcrossf must be a colormap (3 columns)'); return;
end;
if size(g.circfactor,1) ~= size(g.circfactor,2)
disp('Error: Circfactor must be a square matrix'); return;
end;
if size(g.circfactor,1) ~= size(g.coordinates,1)
disp('Error: Circfactor must have the same number of rows as the number of rows of coordinates'); return;
end;
if nbcomponents ~= size(g.coordinates,1)
disp('Error: The array of selected components must have length nrows of the array coordinates'); return;
end;
if ~isstr(g.envylabel)
disp('Error: envelope label must be a string'); return;
end;
if ~isempty(g.envelope)
if (size( g.envelope,1 ) ~=2) | (size( g.envelope,2 ) ~= length(times))
fprintf('Error: Enveloppe array does not have the right size (%s), instead of (%s) i.e. 2 x %d (number of time points) x %d (number of conditions)\n', int2str([2 length(times) nbconditions]), int2str(size( g.envelope)), length(times), nbconditions); return;
end;
end;
if ~isempty(g.condtitle)
if iscell(g.condtitle), g.condtitle = strvcat(g.condtitle{:}); end;
if size( g.condtitle,1 ) ~= nbconditions
fprintf('Error: The number of rows in the title array(%d) must match the number of conditions (%d)\n', size(g.condtitle,1), nbconditions); return;
end;
end;
if length(g.plotorder) ~= length(selected)
error([ 'Error: ''plotorder'' must be the same size as the number of selected components:' int2str(length(selected)) ]);
end;
if max(g.plotorder) > max(selected)
error([ 'Error: ''plotorder'' must be below the number of selected components:' int2str(max(selected)) ]);
end;
% other variables
% ---------------
%limits: power -6 to 6
%limits: ITC 0-1
%limits: coherence 0-1
%limits: coherence angle -180 to 180
g.rthistcolor = [1 1 1];
switch lower(g.resolution)
case 'low', g.resmult = 1;
case 'high', g.resmult = 3;
end;
currentphase = zeros( length(selected), length(selected), nbconditions);
tmp = ALLERSP{1,1};
nwin = size(tmp,2);
%for index = 1:64
% circle(1+index,1, 0.5, g.colormaphsv(index, :));
%end;
% optional resqure of all coordinates
% -----------------------------------
g.magnify = g.magnify/4;
g.dimratio = (g.xlimaxes(2) - g.xlimaxes(1)) / (g.ylimaxes(2) - g.ylimaxes(1));
if strcmp(lower(g.square), 'on')
disp('Square option disabled');
% for index = selected
% if length(selected) > 1
% g.coordinates( index,1) = (g.coordinates( index,1) - g.xlimaxes(1))/(g.xlimaxes(2)-g.xlimaxes(1))/g.magnify;
% g.coordinates( index,2) = (g.coordinates( index,2) - g.ylimaxes(1))/(g.ylimaxes(2)-g.ylimaxes(1))/g.magnify;
% end;
% end;
% g.rthistloc(1) = (g.rthistloc(1) - g.xlimaxes(1))/(g.xlimaxes(2)-g.xlimaxes(1))/g.magnify;
% g.rthistloc(2) = (g.rthistloc(2) - g.ylimaxes(1))/(g.ylimaxes(2)-g.ylimaxes(1))/g.magnify;
% g.rthistloc(3) = g.rthistloc(3)/(g.xlimaxes(2)-g.xlimaxes(1))/g.magnify;
% g.rthistloc(4) = g.rthistloc(4)/(g.ylimaxes(2)-g.ylimaxes(1))/g.magnify;
% g.xlimaxes = [0 1]/g.magnify;
% g.ylimaxes = [0 1]/g.magnify;
end;
% compute RT distribution
% -----------------------
if ~isempty(g.rt)
RTdist = zeros(nbconditions,nwin);
for index = 1:nbconditions
if ~isempty(g.rt{index})
timestep = (times(2)-times(1))/2;
for indeximage = 1:nwin
RTdist(index, indeximage) = length( intersect( find( g.rt{index} > times(indeximage)-timestep ) , find( g.rt{index} <= times(indeximage)+timestep ) ) );
end;
RTdist(index,:) = RTdist(index,:)/max(RTdist(index,:));
end;
end;
RTdist = RTdist/max(RTdist(:));
end;
% create image
% ------------
switch lower(g.resolution)
case 'high', figure( 'position', [100, 100, nbconditions*g.size(1)*3, g.size(2)*3], 'PaperPositionMode', 'auto', 'papertype', 'A1', 'visible',g.visible); %'paperorientation', 'landscape' );
otherwise figure( 'position', ...
[100, 100, ceil(nbconditions*g.size(1)/4)*4, ceil(g.size(2)/4)*4], ...
'PaperPositionMode', 'auto', 'papertype', 'A1', 'visible',g.visible); %'paperorientation', 'landscape' );
end;
axis off
if strcmpi(g.framesout, 'ppm')
r = 0.8465;
pos = get(gcf,'position');
set(gcf, 'position', [ 0 0 floor(pos(3)/r), floor(pos(4)/r) ]);
end;
pos = get(gca,'position');
q = [pos(1) pos(2) 0 0];
s = [pos(3) pos(4) pos(3) pos(4)];
% compute selected latency point
% ------------------------------
if ~isempty(g.latency)
alltimepoints = [];
for index = 1:length(g.latency)
[tmp tmptimepoint] = min(abs(g.latency(index)-times));
alltimepoints = [ alltimepoints tmptimepoint];
end;
else
if isempty(g.frames)
alltimepoints = 1:nwin;
else
alltimepoints = g.frames;
end;
end;
% compute flashes latency
% -----------------------
if ~isempty(g.flashes)
if iscell(g.flashes)
for index = 1:length(g.flashes)
flasheslat(index) = g.flashes{index}{1};
flashescol{index} = g.flashes{index}{2};
end;
else
flasheslat = g.flashes;
for index = 1:length(g.flashes)
flashescol{index} = [0.5 0.5 0.5];
end;
end;
allflashes = [];
for index = 1:length(g.flashes)
[tmp tmptimepoint] = min(abs(flasheslat(index)-times));
allflashes = [ allflashes tmptimepoint];
end;
hback = axes('position', [0 0 1 1], 'xtick', [], 'ytick', [], 'box', 'off'); set (gcf, 'visible', g.visible);
%hpatch = patch([ 0.02 .11 .11 0.02], [0.05 0.05 0.925 0.925], [0.5 0.5 0.5]); lateral
%hpatch = patch([ 0 1 1 0], [0 0 1 1], [0.5 0.5 0.5]); full
%hpatch = patch([ 0.13 0.84 0.84 0.13 ], [0.92 0.92 1 1], [0.5 0.5 0.5]); %up
hpatch = patch([ 0.13 0.84 0.84 0.13 ], [0.8 0.8 0.93 0.93], [0.5 0.5 0.5]);
set(hpatch, 'facecolor', 'w', 'edgecolor', 'none');
set(hback, 'xlim', [0 1], 'ylim', [0 1]);
posf = 0; % used as a counter to preserve color
end;
% draw captions if necessary
% --------------------------
ordinate = 0.2;
switch lower(g.caption)
case 'on' ,
maxcoordx = 1-1/nbconditions/4;
xlimnorm = (1-maxcoordx)/(maxcoordx/nbconditions) * g.xlimaxes;
ylimnorm = 0.45/(1-ordinate) * g.ylimaxes;
switch g.power, case 'on',
c(1) = axes('position', [maxcoordx, -0.1, (1-maxcoordx), 0.45].*s+q, 'xlim', xlimnorm, ...
'ylim', ylimnorm,'visible', g.visible );
scalepower(mean(xlimnorm), min(ylimnorm)+0.2, g); % see function at the end
axis off;
end;
switch g.itc, case 'on',
c(2) = axes('position', [maxcoordx+(1-maxcoordx)/2, 0.29 , (1-maxcoordx)/2, 0.14].*s+q, ...
'visible', g.visible );
if strcmpi(g.polarity, 'posneg') % negative ITCs (difference only) ?
cbar( [-1 1], [-1 1], g.colmapcoh, 'vert', 'circle', g);
ylabel('ITC', 'fontweight', 'bold');
set(gca, 'ytick', [-1 0 1], 'yticklabel', [-1 0 1], 'xticklabel', []);
else
cbar( [0 1], [0 1], g.colmapcoh(length(g.colmapcoh)/2:end,:), 'vert', 'circle', g);
ylabel('ITC', 'fontweight', 'bold');
set(gca, 'ytick', [0 1], 'yticklabel', [0 1], 'xticklabel', []);
end;
end;
switch g.crossf, case 'on',
c(3) = axes('position', [maxcoordx+(1-maxcoordx)/2, 0.47 , (1-maxcoordx)/4, 0.14].*s+q, ...
'visible', g.visible );
if strcmpi(g.polarity, 'posneg') % negative ITCs (difference only) ?
cbar( [-1 1], [-1 1], g.colmapcrossf, 'vert', '', g);
ylabel('Cross-Coh' , 'fontweight', 'bold');
set(gca, 'ytick', [-1 0 1], 'yticklabel', [-1 0 1], 'xticklabel', []);
else
cbar( [0 1], [0 1], g.colmapcrossf(length(g.colmapcrossf)/2:end,:), 'vert', '', g);
ylabel('Cross-Coh' , 'fontweight', 'bold');
set(gca, 'ytick', [0 1], 'yticklabel', [0 1], 'xticklabel', []);
end;
switch g.crossfphasespeed, case 'on',
c(4) = axes('position', [maxcoordx+(1-maxcoordx)/2, 0.69,(1-maxcoordx)/2, 0.25 ].*s+q, ...
'visible', g.visible );
scalecoher([0.02 1], [0.04 0.96], 5, g); % see function at the end
end;
end;
case 'off', maxcoordx = 1;
end;
% draw white axis on envelop if flashes DOES NOT WORK WHEN PRINTING IN EPS
% -------------------------------------
%if ~isempty(g.flashes)
% if ~isempty(g.envelope) % draw axis for the envelope
% eflash = axes('position', [0 0 maxcoordx-0.1 ordinate].*s+q, ...
% 'xtick', [], 'ytick', [], 'box', 'off', 'visible', g.visible, 'color', 'none');
% hpatch2 = patch([ 0 1 1 0], [0 0 1 1], [0.5 0.5 0.5]); set(hpatch2, 'facecolor', 'w', 'edgecolor', 'none');
% end;
%end;
% draw axes and display images
% ----------------------------
max_ordinate = 1-1.4*ordinate; % makes space at top for figure title
for i=1:nbconditions
h(i) = axes('position', [0+maxcoordx/nbconditions*(i-1), ordinate, maxcoordx/nbconditions, max_ordinate].*s+q );
if ~isempty(g.head)
try, img = imread(g.head, 'pcx'); catch, pwd, g.head, disp('Error: unable to load PCX image file'); return; end;
imagesc(img); colormap(gray);
end;
axis off;
if ~isempty(g.condtitle)
xlim = get(gca, 'xlim');
ylim = get(gca, 'ylim');
%h = text( (xlim(2)-xlim(1))*0.05+xlim(1), (ylim(2)-ylim(1))*0.05+ylim(1), g.condtitle(i,:));
h = title(g.condtitle(i,:));
if ~isempty(g.condtitleformat)
set(h, g.condtitleformat{:} );
end;
axis image;
end;
hh(i) = axes('position', [0+maxcoordx/nbconditions*(i-1), ordinate, maxcoordx/nbconditions, max_ordinate].*s+q, ...
'xlim', g.xlimaxes, 'ylim', g.ylimaxes, 'color', 'none', 'ydir', 'reverse', 'visible', g.visible);
axis off;
if ~isempty(g.envelope) % draw axis for the envelope
e(i) = axes('position', [0.1/nbconditions+maxcoordx/nbconditions*(i-1), 0, ...
maxcoordx/nbconditions-0.1/nbconditions, ordinate].*s+q,'visible', g.visible);
end;
end;
%anim = imread('animal.pcx');
%dist = imread('distractor.pcx');
%upmouse = imread('mouseup.pcx');
%downmouse = imread('mousedown.pcx');
%hhimg1 = axes('position', [0, 0.7, 0.2, 0.3].*s+q, 'visible', g.visible, 'color', 'none');
%hhimg2 = axes('position', [0.5, 0.7, 0.2, 0.3].*s+q, 'visible', g.visible, 'color', 'none');
%hhmouse = axes('position', [0.3, 0.6, 0.2, 0.4].*s+q, 'visible', g.visible, 'color', 'none');
% scan time windows
% -----------------
for indeximage = alltimepoints
fprintf('Processing image %d\n', indeximage);
% invert background if necessary
% ------------------------------
if ~isempty(g.flashes)
%axes(hback); set (gcf, 'visible', g.visible);
if ~isempty(find(indeximage == allflashes))
posf = find(indeximage == allflashes);
set(hpatch, 'facecolor', flashescol{posf});
elseif posf == 0 % allow the color to stay 2 images
set(hpatch, 'facecolor', 'w');
else
posf = 0;
end;
end;
% clean images
% ------------
for i=1:nbconditions
axes(hh(i)); cla; set (gcf, 'visible', g.visible);
if strcmpi(g.mesh, 'on')
hold on; h = circle(0,0,1); hold on;
set(h, 'color', 'w');
end;
if ~isempty(g.title) & i == 1
%x = (g.xlimaxes(2)-g.xlimaxes(1))*0.2 + g.xlimaxes(1);
%y = (g.ylimaxes(2)-g.ylimaxes(1))*(-0.06) + g.ylimaxes(1);
%text(x, y, g.title, 'fontsize', 14, 'fontweight', 'bold' );
t = textsc(g.title,'title');
set(t,'VerticalAlignment','top', 'fontsize', 15);
end;
end;
% draw the images if necessary
% ----------------------------
%if abs(times(indeximage)) < 1
% axes(hhimg1); cla; set (gcf, 'visible', g.visible); imagesc(anim); axis off;
% axes(hhimg2); cla; set (gcf, 'visible', g.visible); imagesc(dist); axis off;
%else
% axes(hhimg1); cla; set (gcf, 'visible', g.visible, 'color', 'none'); axis off;
% axes(hhimg2); cla; set (gcf, 'visible', g.visible, 'color', 'none'); axis off;
%end;
%if abs(RTdist(indeximage) > 0)
% axes(hhmouse); cla; set (gcf, 'visible', g.visible); imagesc(upmouse); axis off;
%else
% axes(hhmouse); cla; set (gcf, 'visible', g.visible); imagesc(downmouse); axis off;
%end;
% draw correlations
% -----------------
switch lower(g.crossf), case 'on',
for index1 = selected
for index2 = selected
if index2 > index1
for tmpcond = 1:nbconditions
axes(hh(tmpcond)); set (gcf, 'visible', g.visible);
tmpcrossfpow = ALLCROSSF { index1, index2, tmpcond };
tmpcrossfang = ALLCROSSFANGLE { index1, index2, tmpcond };
tmppower = mean(tmpcrossfpow( FREQS, indeximage));
tmpangle = mean(tmpcrossfang( FREQS, indeximage));
if strcmp(lower(g.crossfphaseunit), 'radian'), tmpangle = tmpangle/pi*180; end;
%fprintf('%d-%d -> power %1.1f\n', index1, index2, tmppower);
drawconnections( g.coordinates( index1,: ), g.coordinates( index2,: ), ...
tmppower, tmpangle, g.circfactor(index1, index2), g);
end;
end;
end;
end;
end;
%axes(hh1); cla; set (gcf, 'visible', g.visible);
%axes(hh2); cla; set (gcf, 'visible', g.visible);
% draw circles
% ------------
for index1 = g.plotorder(:)'
for tmpcond = 1:nbconditions
axes(hh(tmpcond)); set (gcf, 'visible', g.visible);
tmptimef = ALLERSP{ index1, tmpcond};
tmppow = mean(tmptimef( FREQS, indeximage)); % size is power
tmptimef = ALLITC{ index1, tmpcond};
tmpitc = mean(tmptimef( FREQS, indeximage)); % color is ITC
%index1, tmpitc, tmppow,
drawcircle( g.coordinates( index1,: ), tmppow, tmpitc, g);
end;
end;
% put the time
% ------------
coordx1 = (g.xlimaxes(2)-g.xlimaxes(1))*0.1 + g.xlimaxes(1);
coordy1 = (g.ylimaxes(2)-g.ylimaxes(1))*0.87 + g.ylimaxes(1);
tt = text(coordx1 ,coordy1, sprintf('%d ms', round(times(indeximage))) );
set(tt, 'fontsize', 12*g.resmult, 'horizontalalignment', 'right');
% draw a bar for time probability
% -------------------------------
for tmpcond = 1:nbconditions
if ~isempty(g.rt)
if ~isempty(g.rt{tmpcond})
axes(hh(tmpcond)); set (gcf, 'visible', g.visible);
ll = line([g.rthistloc(1)-g.rthistloc(3)/2 g.rthistloc(1)+g.rthistloc(3)/2], [g.rthistloc(2) g.rthistloc(2)]);
set(ll, 'linewidth', 2*g.resmult, 'color', 'k');
barheight = RTdist(tmpcond, indeximage)*g.rthistloc(4);
x1 = g.rthistloc(1)-0.65*g.rthistloc(3)/2;
x2 = g.rthistloc(1)+0.65*g.rthistloc(3)/2;
y1 = g.rthistloc(2);
y2 = g.rthistloc(2)-barheight;
ll = patch([x1 x1 x2 x2], [y1 y2 y2 y1], g.rthistcolor, 'linewidth', 2*g.resmult);
end;
end;
end;
% draw the enveloppe of the signal if necessary
% ---------------------------------------------
if ~isempty( g.envelope )
minordinate = min(min(min(g.envelope)));
maxordinate = max(max(max(g.envelope)));
for tmpcond = 1:nbconditions
axes(e(tmpcond)); cla; set (gcf, 'visible', g.visible);
plot(times, g.envelope(:,:,tmpcond), 'k', 'linewidth', 2*g.resmult); hold on;
set(gca, 'ylim', [minordinate maxordinate]);
set(gca, 'xlim', [times(1) times(end)]);
plot([times(indeximage) times(indeximage)], [minordinate maxordinate], 'b', 'linewidth', 2*g.resmult);
xlabel('time (ms)', 'fontweight', 'bold', 'fontsize', 12*g.resmult); set(gca, 'box', 'off');
set(gca, 'fontsize', 10*g.resmult);
if tmpcond == 1
ylabel(g.envylabel, 'fontweight', 'bold', 'fontsize', 12*g.resmult);
end;
% draw vertical lines if needed
% -----------------------------
if ~isempty(g.envvert)
drawvert(g.envvert, tmpcond, [minordinate maxordinate]);
end;
end;
end;
% save the file for a movie
% -------------------------
if strcmpi(g.framesout, 'eps')
command2 = sprintf('print -depsc -loose image%4.4d.eps', indeximage);
eval(command2);
elseif strcmpi(g.framesout, 'ppm')
command2 = sprintf('print -dppm -loose image%4.4d.ppm', indeximage);
eval(command2);
else % fig format
hgsave(sprintf('image%4.4d.fig', indeximage));
if strcmp(g.visible, 'on')
drawnow;
end;
end;
end;
return;
% function to draw circles
% ------------------------
function [tmpsize, tmpcolor] = drawcircle( tmpcoord, tmpersp, tmpitc, g);
% tmpcoord coordinate of the circle
% tmpersp erps power -> radius
% tmpitc itc -> color
% g preference
switch lower(g.power)
case 'on', tmpsize = (tmpersp-g.scalepower(1))/(g.scalepower(2)-g.scalepower(1)); % in between 0 and 1
case 'off', tmpsize = 0.5;
end;
tmpsize = 0.05 * tmpsize * (g.xlimaxes(2)-g.xlimaxes(1))+0.1;
try
switch lower(g.itc)
case 'on', tmpcolor = g.colmapcoh( length(g.colmapcoh)/2+ceil((tmpitc+0.01)*length(g.colmapcoh)/2),: );
case 'off', tmpcolor = g.colmapcoh( length(g.colmapcoh)/2,: );
%case 'on', tmpcolor = g.colmapcoh( 64-ceil((tmpitc+0.01)*63),: );
%case 'off', tmpcolor = g.colmapcoh( 64-ceil((0+0.01)*63),: );
end;
catch, tmpcolor = g.colmapcoh( length(g.colmapcoh)/2,: ); end;
if tmpersp == 0
dashed = 1;
else
dashed = 0;
end;
tmpsize = g.diskscale*tmpsize;
if tmpsize > 0
circle( tmpcoord(1), tmpcoord(2), [tmpsize tmpsize*g.dimratio], tmpcolor, 'k', 0, 360, dashed, fastif(dashed, 2, 1));
end;
return;
% function to draw the lines
% --------------------------
function newphase = drawconnections( pos1, pos2, crossfpower, crossfangle, circfact, g);
% pos1, pos2 position of the points
% crossfpower coherence power for width of the line
% crossfangle coherence angle for color and speed of the line
% cirfact curvature of the line
% g preference
% normalize values depending on scaling
% -------------------------------------
%g.scalecoher = 2 * g.scalecoher / (g.xlimaxes(2)-g.xlimaxes(1));
%g.scalepower = 2 * g.scalepower / (g.xlimaxes(2)-g.xlimaxes(1));
% if the two circle are too close and do not draw the line
% --------------------------------------------------------
distance = abs(pos1(1)+j*pos1(2)-pos2(1)-i*pos2(2));
if distance < 0.05*(g.ylimaxes(2) - g.ylimaxes(1)), return;
end;
crossfpowerabs = abs(crossfpower);
switch lower(g.crossfcoh)
case 'on', tmpthick = (crossfpowerabs-g.scalecoher(1))/(g.scalecoher(2)-g.scalecoher(1)); % determine thickness = coherence amplitude
case 'off', tmpthick = 0;
end;
sizec = size( g.colmapcrossf,1 );
switch lower(g.crossfphasecolor)
case 'on', tmpcolor = g.colmapcrossf( sizec/2+ ceil(tmpthick*(sizec/2-1)+1)*sign(crossfpower), : ); % determine color = coherence phase
case 'off', tmpcolor = g.colmapcrossf( sizec/2, : );
end;
tmpthick = 30 * (tmpthick-0.1); % does not vary with the axis zoom
% absolute value to 90 degree determine speed
switch lower(g.crossfphasespeed)
case 'on', curphase = (crossfangle+180)/360; % phase from 1 to 0
case 'off', curphase = 0.5;
end;
if tmpthick > 0
%fprintf('(%d,%d)->(%d,%d) %3.2f: %3.2f %3.2f %3.2f\n', pos1(1), pos2(1), pos1(2), ...
% pos2(2), distance, crossfpower, crossfangle, circfact);
if circfact ~= 0
circpatch( [ pos1(1) pos2(1) ] , [ pos1(2) pos2(2) ], circfact, tmpcolor, g.resmult*tmpthick, 100, mod(curphase,1), 0);
else
superline( [ pos1(1) pos2(1) ] , [ pos1(2) pos2(2) ], tmpcolor, g.resmult*tmpthick, mod(curphase,1), 0);
end;
end;
return;
% ***************************************************************************************
% Caption and tests
% ***************************************************************************************
% function to draw circles at all power
% -------------------------------------
function scalepower(posx, posy, g);
NBCIRCLE = 3;
coordy = posy;
powerscale = [ ceil( g.scalepower(1) ) 0 floor( g.scalepower(2) ) ];
xlim = get(gca, 'xlim');
ylim = get(gca, 'ylim');
for i=1:NBCIRCLE
[tmpsize] = drawcircle( [posx coordy], powerscale(i), 0, g);
if i == 1, tmpsizeori = tmpsize; end;
tt = text( 1.4*(xlim(2) - xlim(1))+xlim(1), coordy , sprintf('%2.1fdB', powerscale(i)));
set(tt, 'fontsize', 10*g.resmult, 'horizontalalignment', 'right', 'fontweight', 'bold');
coordy = coordy + tmpsize + 0.2*(ylim(2)-ylim(1));
%command2 = sprintf('print -depsc -loose scale%d.eps', i);
%eval(command2);
%cla;
end;
set(gca, 'xlim', xlim, 'ylim', ylim-tmpsizeori, 'clipping', 'off', 'fontsize', 10*g.resmult);
return;
% function to draw lines at all coherence
% ---------------------------------------
function scalecoher(posx, posy, thickness,g);
compter = -5;
for i=linspace( posy(1), posy(2), 11)
superline( [ posx(1) posx(2) ], [ i i ], 'b', thickness*g.resmult, mod(compter/10, 1));
compter = compter + 1;
end;
%ylabel('Phase-Coh', 'fontweight', 'bold', 'fontsize', 12*g.resmult);
set(gca, 'box', 'on', 'ylim', [0 1], 'ytick', [0 0.5 1], ...
'yticklabel', strvcat('-180º','0º','180º'), 'xlim', [0 1], 'xtick', [], 'xticklabel', [], 'fontsize', 10*g.resmult);
%hold on; ff = fill([0 0.02 0.02 0], [0 0 1 1], 'w'); set(ff, 'edgecolor', 'w');
%hold on; ff = fill([0 0 1 1], [0 0.02 0.02 0], 'w'); set(ff, 'edgecolor', 'w');
return;
% colorbar special
% ----------------
function cbar( X, Y, colors, orientation, style, g );
% colors = colors to plot
% orientation = 'vert' or 'horiz'
% style = shape of the colorbar, 'circle' = circle, bar otherwise
NSEGMENTS = size(colors,1)-1;
compter = 0;
switch lower(orientation)
case 'horiz'
inc = (X(2)-X(1))/NSEGMENTS;
for i=linspace(X(1),X(2)-inc,NSEGMENTS);
compter = compter + 1;
hold on;
h = fill( [i i i+inc i+inc], [Y(1) Y(2) Y(2) Y(1)], colors(size(colors,1)+1-compter, :));
set(h, 'edgecolor', 'none');
end;
case 'vert'
inc = (X(2)-X(1))/NSEGMENTS;
for i=linspace(Y(1),Y(2)-(Y(2)-Y(1))/NSEGMENTS,NSEGMENTS);
compter = compter + 1;
hold on;
switch style
case 'circle',
mid = (X(2)-X(1))/2;
angle = acos( compter/NSEGMENTS*2-1);
angle1 = acos( (compter+1)/NSEGMENTS*2-1);
coordx1 = mid - sin( angle )*mid;
coordx2 = mid + sin( angle )*mid;
coordx3 = mid + sin( angle1 )*mid;
coordx4 = mid - sin( angle1 )*mid;
coordx = real([coordx1 coordx2 coordx3 coordx4]);
otherwise, coordx = [X(1) X(2) X(2) X(1)];
end;
h = fill( coordx, [i i i+inc i+inc], colors(compter, :));
set(h, 'edgecolor', 'none');
end;
otherwise
disp('Orientation has to be ''vert'' or ''horiz''');
end;
set(gca, 'fontsize', 10*g.resmult);
if strcmp(style, 'circle'), axis square; end;
return;
% draw vertical lines
% -------------------
function drawvert(tmpev, tmpcond, coords);
if isstruct(tmpev) | isstruct(tmpev{1})
% cooper envert
%--------------
if length(tmpev) > 1,
verts = tmpev{ tmpcond };
else verts = tmpev{1};
end
for v=verts,
if isstruct(v), ev = v;
else, ev.time = v; ev.color = 'k'; ev.style = '-';
end
phandle = plot([ev.time ev.time], coords, ev.style, 'linewidth', 1);
set(phandle,'color',ev.color);
end;
else
% standard envvert
% ----------------
for index = 1:length(tmpev)
if ~iscell(tmpev{index}),
plot([tmpev{index} tmpev{index}], coords, 'k');
else
phandle = plot([tmpev{index}{1} tmpev{index}{1}], coords, 'k');
if length(tmpev{index}) > 2
set(phandle,tmpev{index}{2:end});
end;
end;
end;
end;
return;
% check the flux
% --------------
for indeximage = 1:nwin-7
index1 = 1;
index2 = 2;
% determine color = coherence phase
tmpcrossf = ALLCROSSFANGLE { index1, index2, 1 };
tmpvalue = mean(tmpcrossf( 1:2, indeximage));
tmpcolor = colormaphsv( ceil((tmpvalue+180)/360*63) + 1, : ); % index for color
% absolute value to 90 degree determine speed
speed = 1 - abs(90 - abs(tmpvalue))/90; % speed from 1 to 0
currentphase(index1, index2) = currentphase(index1, index2) + sign(tmpvalue)*speed/3; % 1 cycle in 5 images at max speed
superline( [ 2 1] , [ 1+indeximage 0.8+indeximage], 5, tmpcolor, mod(currentphase(index1, index2),1));
end;
return;