T?f& MANIPAL INSTITUTE OF TECHNOLOGY

%5 MANIPAL
wnw™ (A constituent unit of MAHE, Manipal)

I

LAB MANUAL
DEEP LEARNING LAB [CSE 3281]

Sixth Semester BTech in CSE(AI&ML)
(JAN — MAY 2024)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
MANIPAL INSTITUTE OF TECHNOLOGY
MANIPAL-576104

g Tﬂ' MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL
W “\ (A constituent unit of MAHE, Manipal)

CERTIFICATE

This 1s to certify that MS./IMI. . e
has satisfactorily completed the LAB EXERCISES PRESCRIBED FOR DEEP
LEARNING LAB (CSE 3281) of Third Year B.Tech. degree in Computer Science and

Engineering (Al & ML) at MIT, Manipal, in the Academic Year 2023—2024.

Signature
Faculty in Charge

CONTENTS

LAB
NO.

TITLE

PAGE
NO.

REMARKS

Course Objectives and Outcomes

Evaluation plan

Instructions to the Students

ii

1 Introduction to tensors

2 Computational graphs

3 Linear Regression and Linear Neural
Network for classification

4 Convolutional Neural Network

5 Transfer Learning

6 Regularization for Deep Neural Networks

7 Optimizers

8 Recurrent Neural Networks

9 Long-Short Term Memory (LSTM)

10 | Encoder-Decoders, Variational Auto
Encoders

11 | Mini-Project

12 | Generative Adversarial Networks (GANs)

References

Course Objectives

e Understand implementation detail of deep learning models.
e Develop familiarity with tools and software frameworks for designing DNNs.

Course Outcomes
At the end of this course, students will be able to

e Understand basic motivation and functioning of the most common type of neural network
and its activation functions.

e Design Convolutional Neural Network and perform classification using Convolutional
Neural Network.

e Implement some of the important well-known deep neural architectures for Computer
Vision/NLP applications.

e Apply different types of auto encoders with dimensionality reduction and regularization.

e Apply deep learning techniques for practical problems.

Evaluation plan

e Internal Assessment Marks: 60M
o Continuous Evaluation: 20M
* Continuous evaluation component (for each evaluation): 10 marks
= The assessment will depend on punctuality, program execution, maintaining
the observation note and answering the questions in viva voce.
o Mid-term test : 20M
o Mini-project: 20M [Report 50% + Implementation and Demo 50%]
e End semester assessment: 40

INSTRUCTIONS TO THE STUDENTS

Pre- Lab Session Instructions

Students should carry the Lab Manual Book and the required stationery to every lab
session.

Be in time and follow the institution dress code.

Must Sign in the log register provided.

Make sure to occupy the allotted seat and answer the attendance

Adhere to the rules and maintain the decorum.

Students must come prepared for the lab in advance.

L.

Sl

In- Lab Session Instructions

Follow the instructions on the allotted exercises.
Show the program and results to the instructors on completion of experiments.

On receiving approval from the instructor, copy the program and results in the Lab
record.
Prescribed textbooks and class notes can be kept ready for reference if required.

General Instructions for the exercise in Lab

Implement the given exercise individually and not in a group.

Observation book should be complete with program, proper input output clearly
showing the parallel execution in each process. Plagiarism (copying from others) is
strictly prohibited and would invite severe penalty in evaluation.

The exercises for each week are divided under three sets:

Solved example

Lab exercises - to be completed during lab hours

Additional Exercises - to be completed outside the lab or in the lab to enhance the

In case a student misses a lab class, he/ she must ensure that the experiment is
completed during the repetition class with the permission of the faculty concerned but
credit will be given only to one day's experiment(s).

Questions for lab tests and examination are not necessarily limited to the questions in
the manual, but may involve some variations and / or combinations of the questions.

THE STUDENTS SHOULD NOT
Bring mobile phones or any other electronic gadgets to the lab.
Go out of the lab without permission.

i

Lab No 1: Date:

Introduction to tensors

Objectives:
In this lab, student will be able to

1. Setup pytorch environment for deep learning
2. Understand the concept of tensor
3. Manipulate tensors using built-in functions

A summary of the topics that is covered in this session are:

Topic Contents
Introduction to Tensors are the basic building block of all of machine learning and
tensors deep learning.

Tensors can represent almost any kind of data (images, words,

Creating tensors tables of numbers).

Getting information If you can put information into a tensor, you'll want to get it out
from tensors too.

Machine learning algorithms (like neural networks) involve
Manipulating tensors manipulating tensors in many different ways such as adding,
multiplying, combining.

One of the most common issues in machine learning is dealing with
shape mismatches (trying to mixed wrong shaped tensors with
other tensors).

Dealing with tensor
shapes

If you've indexed on a Python list or NumPy array, it's very similar

Indexing on tensors ;) :
g with tensors, except they can have far more dimensions.

Mixing PyTorch PyTorch plays with tensors (torch.Tensor), NumPy likes arrays
tensors and NumPy (np.ndarray) sometimes you'll want to mix and match these.

Running tensors on | GPUs (Graphics Processing Units) make your code faster, PyTorch
GPU makes it easy to run your code on GPUs.

Sample Exercise:

Use console window to execute the instructions given below:

import torch
torch.__version__

Introduction to tensors

[[[-0.01157, 0.02485, 0.02878...
-0.01271, 0.03971, 0.08827...

—— 0.02680, 0.05589,-0.01068...
-0.00597, 0.00639, -0.01819...
Al

- - Tensor representation of image
(could be almost anything)) with shape [3, 224, 224]
Processed inputs
(these get represented as a tensor,
the processing will depend on the
input)

Creating tensors

Scalar
scalar = torch.tensor(7)
scalar

Get the Python number within a tensor (only works with one-element tensors)
scalar.item()

Vector
vector = torch.tensor([7, 7])
vector
Matrix
MATRIX = torch.tensor([[7, 8],
[9, 1e]1])
MATRIX
MATRIX.shape
Tensor
TENSOR = torch.tensor([[[1, 2, 3],
[3, 6, 9],
[2, 4, 5]1])
TENSOR

Check number of dimensions for TENSOR
TENSOR.ndim

Visualization of Tensor Dimension:

tensor([[[1, 2, 3],
0 [37 61 g]l
(2, 4, 5111) Dimension (dim)

tensor([[[1, 2, 31, I
[3, 6, 91, torch.Size([1, 3, 31)

(2, 4, 5141)

tensor([[[1, 2, 3],
=2 {3r 61 9];
2, 4, 5411)

Scalar Vector
B 1
7 or 7 4
7 L |
4
Matrix Tensor

s G G 4

Random Tensors:

Create a random tensor of size (3, 4)
random_tensor = torch.rand(size=(3, 4))

random_tensor, random_tensor.dtype

Output:

(tensor([[0.9900, 0.1882, 0.1744, 0.7445],
[0.9445,0.7044, 0.7024, 0.7877],

[0.0218, 0.7861, 0.9037, 0.9690]]),
torch.float32)

The flexibility of torch.rand() is that we can adjust the size to be whatever we want.

For example, say you wanted a random tensor in the common image shape of[224, 224, 3] ([height,
width, color channels]).

Create a random tensor of size (224, 224, 3)
random_image size tensor = torch.rand(size=(224, 224, 3))

random_image size tensor.shape, random image size tensor.ndim
(torch.Size([224, 224, 3]), 3)

Zeros and ones
Sometimes you'll just want to fill tensors with zeros or ones.

This happens a lot with masking (like masking some of the values in one tensor with zeros to let a
model know not to learn them).

Let's create a tensor full of zeros with torch.zeros()
Again, the size parameter comes into play:.
Create a tensor of all zeros
zeros = torch.zeros(size=(3, 4))
zeros, zeros.dtype
Output:
(tensor([[0.,0.,0.,0.],
[0.,0,0.,0],
[0.,0.,0.,0.]]),
torch.float32)
We can do the same to create a tensor of all ones except using torch.ones() instead.
Create a tensor of all ones
ones = torch.ones(size=(3, 4))

ones, ones.dtype

Output:

(tensor([[1., 1., 1., 1.],
| e e
1 1 | 3

torch.float32)

Creating a range and tensors:

Sometimes you might want a range of numbers, such as 1 to 10 or 0 to 100. You can use
torch.arange(start, end, step) to do so.

Where:

start = start of range (e.g. 0)

end = end of range (e.g. 10)

step = how many steps in between each value (e.g. 1)

Note: In Python, you can use range() to create a range. However in PyTorch, torch.range() is
deprecated and may show an error in the future.

Use torch.arange(), torch.range() is deprecated
zero to_ten deprecated = torch.range(0, 10) # Note: this may return an error in the future

Create a range of values 0 to 10
zero _to_ten = torch.arange(start=0, end=10, step=1)
zero_to_ten

Can also create a tensor of zeros similar to another tensor
ten_zeros = torch.zeros_like(input=zero to ten) # will have same shape
ten_zeros

Note:

There are many different tensor datatypes available in PyTorch. Some are specific for CPU and
some are better for GPU. Getting to know which is which can take some time. Generally if you see
torch.cuda anywhere, the tensor is being used for GPU (since Nvidia GPUs use a computing toolkit
called CUDA). The most common type (and generally the default) is torch.float32 or torch.float.
This is referred to as "32-bit floating point". But there's also 16-bit floating point (torch.float16 or
torch.half) and 64-bit floating point (torch.float64 or torch.double). And to confuse things even
more there's also 8-bit, 16-bit, 32-bit and 64-bit integers. The reason for all of these is to do with
precision in computing. Precision is the amount of detail used to describe a number. The higher the
precision value (8, 16, 32), the more detail and hence data used to express a number. This matters
in deep learning and numerical computing because you're making so many operations, the more
detail you have to calculate on, the more compute you have to use. So lower precision datatypes

are generally faster to compute on but sacrifice some performance on evaluation metrics like
accuracy (faster to compute but less accurate).

Let's see how to create some tensors with specific datatypes. We can do so using
the dtype parameter.

Default datatype for tensors is float32

float 32 tensor — terch.tensor ([3.0, 6.0, 9.0], dtype=None, device-None,
requires grad=False)

dtype=None, defaults to None, which is torch.float32 or whatever datatype is
passed

device=None, defaults to None, which uses the default tensor type

requires grad=False if True, operations performed on the tensor are recorded

float 32 tensor.shape, float 32 tensor.dtype, float 32 tensor.device

tleat 16 tensor = terch.tenser([3.0; 6.0, 9.0];
dtype=torch.floatlé6) # torch.half would also
work

float 16 tensor.dtype

Create a tensor
some tensor = torch.rand(3, 4)

Find out details about it

print (some_ tensor)

print (f"Shape of tensor: {some tensor.shape}")

print (f"Datatype of tensor: {some tensor.dtype}")

print (f"Device tensor is stored on: {some tensor.device}") # will default to
CPU

tensor ([[0:9270, 06217, 09093, 0.1493],
[0:4354, 1026207, 10,9224 0.0312];
[@.3800, 0.0259, 0.6050, 0.7674]1)

Shape of tensor: torch.Size([3, 41])

Datatype of tensor: torch.float32

Device tensor is stored on: cpu

Manipulating tensors (tensor operations)
In deep learning, data (images, text, video, audio, protein structures, etc) gets represented as
tensors.

A model learns by investigating those tensors and performing a series of operations on tensors to
create a representation of the patterns in the input data.
These operations are often:

e Addition

e Substraction

e Multiplication (element-wise)

e Division

e Matrix multiplication

Basic operations
Let's start with a few of the fundamental operations, addition (+), subtraction (-), mutliplication

().

They work just as you think they would.

Create a tensor of values and add a number to it
tensor = torch.tensor([1l, 2, 3])

tensor + 10

tensor ([11, 12, 13])

Multiply it by 10
tensor * 10
tensor ([10, 20, 301])

Notice how the tensor values above didn't end up being tensor([110, 120,
130]), this is because the values inside the tensor don't change unless
they're reassigned.

Tensors don't change unless reassigned

tensor

tenser ([1, 2, 3])

Let's subtract a number and this time we'll reassign the tensor variable.
Subtract and reassign

tensor = tensor - 10
tensor

tensor ([-9, -8, -71)
Add and reassign
tensor = tensor + 10
tensor

tensor ([1, 2, 31)

PyTorch also has a bunch of built-in functions like torch.mul () (short for
multiplcation) and torch.add() to perform basic operations.

Can also use torch functions

torch.multiply(tensor, 10)

tensor ([10, 20, 301])

Original tensor is still unchanged

tensor

tensor ([1, 2, 31)

However, it's more common to use the operator symbols like * instead of torch.mul()

7

Element-wise multiplication (each element multiplies its equivalent, index ©->0, 1-
>1, 2->2)

print(tensor, "*", tensor)

print("Equals:", tensor * tensor)

tensor([1, 2, 3]) * tensor([1, 2, 3])

Equals: tensor([1, 4, 9])

Matrix multiplication:
One of the most common operations in machine learning and deep learning algorithms (like neural
networks) is matrix multiplication. PyTorch implements matrix multiplication functionality in
the torch.matmul() method.
The main two rules for matrix multiplication to remember are:
1. The inner dimensions must match:
e (3,2) @ (3, 2) won't work
e (2,3)@ (3, 2) will work
e (3,2) @ (2, 3) will work
2. The resulting matrix has the shape of the outer dimensions:
* 2,3)@(3,2)->(2,2)
* 3.2@(2,3)->(G,3)

Let's create a tensor and perform element-wise multiplication and matrix multiplication on it.

import torch

tensor = torch.tensor([1, 2, 3])
tensor.shape

torch.Size([3])

The difference between element-wise multiplication and matrix multiplication is the addition of
values.
For our tensor variable with values [1, 2, 3]:

Operation Calculation Code

Element-wise multiplication | [1*1,2%*2 3*3]=[1,4,9] | tensor * tensor

Matrix multiplication [1%1 +2%2 £ 3%3]|—[14] tensor.matmul(tensor)

Element-wise matrix multiplication

tensor * tensor

tensor([1, 4, 9])

Matrix multiplication

torch.matmul(tensor, tensor)

tensor(14)

Can also use the "@" symbol for matrix multiplication, though not recommended
tensor @ tensor

tensor(14)

You can do matrix multiplication by hand but it's not recommended.

The in-built torch.matmul() method is faster.
%%time
Matrix multiplication by hand
(avoid doing operations with for loops at all cost, they are computationally
expensive)
value = 0
for i in range(len(tensor)):
value += tensor[i] * tensor[i]
value
CPU times: user 178 ps, sys: 62 pys, total: 240 ps
Wall time: 248 ps

tensor(14)

%%time

torch.matmul(tensor, tensor)

CPU times: user 272 ps, sys: 94 pus, total: 366 ps
Wall time: 295 pus

tensor(14)

Getting PyTorch to run on the GPU

You can test if PyTorch has access to a GPU using torch.cuda.is_available().

Check for GPU

import torch
torch.cuda.is_available()
False

Let's create a device variable to store what kind of device is available.

Set device type
device = "cuda" if torch.cuda.is_available() else "cpu"
device

cpu

Count number of devices
torch.cuda.device_count()

Putting tensors (and models) on the GPU

You can put tensors (and models, we'll see this later) on a specific device by calling to(device) on
them. Where device is the target device you'd like the tensor (or model) to go to.

Why do this?

GPUs offer far faster numerical computing than CPUs do and if a GPU isn't available, because of
our device agnostic code (see above), it'll run on the CPU.

Note: Putting a tensor on GPU using to(device) (e.g. some_tensor.to(device)) returns a copy of

that tensor, e.g. the same tensor will be on CPU and GPU. To overwrite tensors, reassign them:
some_tensor = some_tensor.to(device)
Let's try creating a tensor and putting it on the GPU (if it's available).

9

Create tensor (default on CPU)
tensor = torch.tensor([1, 2, 3])

Tensor not on GPU
print(tensor, tensor.device)

Move tensor to GPU (if available)
tensor_on_gpu = tensor.to(device)
tensor_on_gpu

tensor([1, 2, 3]) cpu
tensor([1, 2, 3], device='cuda:0"')

Moving tensors back to the CPU

What if we wanted to move the tensor back to CPU?

For example, you'll want to do this if you want to interact with your tensors with NumPy (NumPy
does not leverage the GPU).

Let's try using the torch. Tensor.numpy() method on our tensor on_gpu.

If tensor is on GPU, can't transform it to NumPy (this will error)
tensor_on_gpu.numpy()

Instead, to get a tensor back to CPU and usable with NumPy we can use Tensor.cpu(). This copies
the tensor to CPU memory so it's usable with CPUs.

Instead, copy the tensor back to cpu
tensor_back_on_cpu = tensor_on_gpu.cpu().numpy()
tensor_back_on_cpu

Lab Exercise:
1. Illustrate the functions for Reshaping, viewing, stacking, squeezing and unsqueezing of

tensors

[lustrate the use of torch.permute().

[lustrate indexing in tensors

Show how numpy arrays are converted to tensors and back again to numpy arrays

Create a random tensor with shape (7, 7).

Perform a matrix multiplication on the tensor from 2 with another random tensor with

shape (1, 7) (hint: you may have to transpose the second tensor).

7. Create two random tensors of shape (2, 3) and send them both to the GPU (you'll need
access to a GPU for this).

8. Perform a matrix multiplication on the tensors you created in 6 (again, you may have to
adjust the shapes of one of the tensors).

9. Find the maximum and minimum values of the output of 7.

10. Find the maximum and minimum index values of the output of 7.

A A

10

11. Make a random tensor with shape (1, 1, 1, 10) and then create a new tensor with all the 1
dimensions removed to be left with a tensor of shape (10). Set the seed to 7 when you
create it and print out the first tensor and it's shape as well as the second tensor and it's
shape.

11

References:

1. Eli Stevens, Luca Antiga, and Thomas Viehmann, Deep Learning with PyTorch, Manning,
2020
2. Goodfellow, Ian, et al. Deep learning. Vol. 1. No. 2. Cambridge: MIT press, 2016.

12

