forked from NVIDIA/DeepRecommender
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
101 lines (87 loc) · 4.33 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
# Copyright (c) 2017 NVIDIA Corporation
import torch
import argparse
import copy
from reco_encoder.data import input_layer
from reco_encoder.model import model
from torch.autograd import Variable
from pathlib import Path
parser = argparse.ArgumentParser(description='RecoEncoder')
parser.add_argument('--drop_prob', type=float, default=0.0, metavar='N',
help='dropout drop probability')
parser.add_argument('--constrained', action='store_true',
help='constrained autoencoder')
parser.add_argument('--skip_last_layer_nl', action='store_true',
help='if present, decoder\'s last layer will not apply non-linearity function')
parser.add_argument('--hidden_layers', type=str, default="1024,512,512,128", metavar='N',
help='hidden layer sizes, comma-separated')
parser.add_argument('--path_to_train_data', type=str, default="", metavar='N',
help='Path to training data')
parser.add_argument('--path_to_eval_data', type=str, default="", metavar='N',
help='Path to evaluation data')
parser.add_argument('--non_linearity_type', type=str, default="selu", metavar='N',
help='type of the non-linearity used in activations')
parser.add_argument('--save_path', type=str, default="autorec.pt", metavar='N',
help='where to save model')
parser.add_argument('--predictions_path', type=str, default="out.txt", metavar='N',
help='where to save predictions')
args = parser.parse_args()
print(args)
use_gpu = torch.cuda.is_available() # global flag
if use_gpu:
print('GPU is available.')
else:
print('GPU is not available.')
def main():
params = dict()
params['batch_size'] = 1
params['data_dir'] = args.path_to_train_data
params['major'] = 'users'
params['itemIdInd'] = 1
params['userIdInd'] = 0
print("Loading training data")
data_layer = input_layer.UserItemRecDataProvider(params=params)
print("Data loaded")
print("Total items found: {}".format(len(data_layer.data.keys())))
print("Vector dim: {}".format(data_layer.vector_dim))
print("Loading eval data")
eval_params = copy.deepcopy(params)
# must set eval batch size to 1 to make sure no examples are missed
eval_params['batch_size'] = 1
eval_params['data_dir'] = args.path_to_eval_data
eval_data_layer = input_layer.UserItemRecDataProvider(params=eval_params,
user_id_map=data_layer.userIdMap,
item_id_map=data_layer.itemIdMap)
rencoder = model.AutoEncoder(layer_sizes=[data_layer.vector_dim] + [int(l) for l in args.hidden_layers.split(',')],
nl_type=args.non_linearity_type,
is_constrained=args.constrained,
dp_drop_prob=args.drop_prob,
last_layer_activations=not args.skip_last_layer_nl)
path_to_model = Path(args.save_path)
if path_to_model.is_file():
print("Loading model from: {}".format(path_to_model))
rencoder.load_state_dict(torch.load(args.save_path))
print('######################################################')
print('######################################################')
print('############# AutoEncoder Model: #####################')
print(rencoder)
print('######################################################')
print('######################################################')
rencoder.eval()
if use_gpu: rencoder = rencoder.cuda()
inv_userIdMap = {v: k for k, v in data_layer.userIdMap.items()}
inv_itemIdMap = {v: k for k, v in data_layer.itemIdMap.items()}
eval_data_layer.src_data = data_layer.data
with open(args.predictions_path, 'w') as outf:
for i, ((out, src), majorInd) in enumerate(eval_data_layer.iterate_one_epoch_eval(for_inf=True)):
inputs = Variable(src.cuda().to_dense() if use_gpu else src.to_dense())
targets_np = out.to_dense().numpy()[0, :]
outputs = rencoder(inputs).cpu().data.numpy()[0, :]
non_zeros = targets_np.nonzero()[0].tolist()
major_key = inv_userIdMap [majorInd]
for ind in non_zeros:
outf.write("{}\t{}\t{}\t{}\n".format(major_key, inv_itemIdMap[ind], outputs[ind], targets_np[ind]))
if i % 10000 == 0:
print("Done: {}".format(i))
if __name__ == '__main__':
main()