-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoilspecs.html
1704 lines (1690 loc) · 63.8 KB
/
soilspecs.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<title>ARIES :: Sediment regulation module specs</title>
<!-- START links for common functions (layout, menu, RSS feed) -->
<link rel="stylesheet" type="text/css" href="yui/base/base.css">
<link rel="stylesheet" type="text/css" href="yui/grids/grids.css">
<link rel="stylesheet" type="text/css" href="css/style.css">
<script src="js/swfobject_modified.js" type="text/javascript"></script>
<script src="js/mootools.js" type="text/javascript"></script>
<script src="js/roundedcorners.js" type="text/javascript"></script>
<link href="css/roundedcorners.css" rel="stylesheet" type="text/css">
<script type="text/javascript">
window.addEvent('domready', function() {
// var box1 = new RoundedCorners('pf_roundedCorners1','.roundedContent230', {radius: 49});
var image1 = new RoundedCorners('pf_roundedCorners1','.roundedImage', {overlay: true, radius: 20, cls: 'image'});
});
</script>
<link rel="stylesheet" type="text/css" href="mouseovertabs.css" />
<script src="mouseovertabs.js" type="text/javascript"></script>
<script src="js/jquery-1.2.1.min.js" type="text/javascript"></script>
<script src="js/rsswidget.js" type="text/javascript"></script>
<!-- END links for common functions (layout, menu, RSS feed) -->
<script src="swf/swfobject_modified.js" type="text/javascript"></script>
<style type="text/css">
.style8 {
border-style: solid;
text-align: left;
}
.style9 {
text-align: left;
vertical-align: top;
}
.style10 {
color: #6699FF;
}
.style12 {
font-size: large;
}
.style14 {
font-size: 100%;
}
.style19 {
font-size: small;
}
.style20 {
border-collapse: collapse;
font-size: 11.0pt;
font-family: Calibri, sans-serif;
border-left-style: solid;
border-left-color: inherit;
border-left-width: 1px;
border-right: 1px solid #C0C0C0;
border-top-style: solid;
border-top-color: inherit;
border-top-width: 1px;
border-bottom: 1px solid #C0C0C0;
}
.style21 {
font-size: small;
text-align: left;
}
.style22 {
border-collapse: collapse;
font-size: 11.0pt;
font-family: Calibri, sans-serif;
border-style: none;
border-color: inherit;
border-width: medium;
}
.style24 {
font-weight: bold;
font-size: large;
color: #008000;
}
.style25 {
vertical-align: super;
}
.style26 {
color: #000000;
}
.style27 {
text-indent: -6px;
line-height: 150%;
margin-left: 6px;
}
</style>
</head>
<body>
<!-- START js activation code -->
<script type="text/javascript">
var feed = "http://www.facebook.com/feeds/notes.php?id=104442313608&viewer=1840576015&key=bcbe6730e0&format=rss20";
var target_id = "#rss-widget";
Technosophos.rssWidget(feed, target_id);
</script>
<!-- END js activation code -->
<div id="doc2" class="yui-t2">
<div id="hd" role="banner">
<!-- START header (menu, banner, rule) -->
<!-- START menu -->
<div id="mytabsmenu" class="tabsmenuclass">
<ul class="tabsmenuclass">
<li><a href="main.html" rel="gotsubmenu">About</a></li>
<li><a href="modules.html" rel="gotsubmenu">Modules</a></li>
<li><a href="science.html" rel="gotsubmenu">Case studies</a></li>
<li><a href="science.html" rel="gotsubmenu">Resources</a></li>
</ul>
</div>
<div id="mysubmenuarea" class="tabsmenucontentclass">
<a href="submenucontents.htm" style="visibility:hidden">Sub Menu contents</a>
</div>
<!-- END menu -->
<img src="img/banner.gif" />
<!-- END header (menu, banner, rule) -->
</div><!-- end hd banner -->
<div id="bd" role="main">
<div class="yui-g">
<!-- YOUR DATA GOES HERE -->
<h1><b><span>Sediment
regulation</span></b>
<span class="style1"><strong class="style12"> Current Status: </strong>
</span><span class="style24">Functional</span></h1>
<h6 style="background-color:#eeeeee">
<!--<![endif]-->
</object><span>Spatial modeling of sedimentation has frequently been done
using models such as the Universal Soil Loss Equation (USLE, Wischmeier
and Smith 1978) Revised Universal Soil Loss Equation (RUSLE, Renard et al.
1996), or Spatially Explicit Delivery Model (SEDMOD, Fraser 1999).
USLE and RUSLE multiply five coefficients – rainfall runoff erosivity,
soil erodibility, slope steepness and length, cover management, and
conservation practice to estimate soil loss over a given area and time
(e.g., tons sediment/ha-yr).</span></h6>
</div>
<div class="yui-gd">
<div class="yui-u first">
<div style="padding-right:12px">
<h2 style="margin-top:32px">Definitions</h2>
<hr/>
<!-- benefits panel -->
<h5 class="style10">Erosion sinks</h5>
<span>Erosion sinks are areas where sediment accumulates as
it flows downhill and/or downstream. </span><br></div>
</div>
<div class="yui-u">
<!-- YOUR DATA GOES HERE -->
<table width="100%" border="0" cellpadding="0">
<tr>
<td colspan="3">
<h2 style="margin-top:32px">Module specifications</h2>
<hr/>
<!-- benefits panel -->
</td>
</tr>
<tr>
<td width="50%" class="style9">
<h5 class="style10" style="width: 609px">Case studies</h5>
<h5 class="style21" style="width: 609px">(1) Madagascar
(2) Western Washington (3) Dominican Republic</h5>
<h5 class="style19" style="width: 609px"> </h5>
<h5 class="style10" style="width: 609px">E<span class="style14">xplanation</span></h5>
<p class="MsoNormal">Based on the above papers and
models, along with stakeholder input from partners in
the Western Washington and Madagascar case studies, we
designed ad hoc probabilistic models of sedimentation
that could compliment the deterministic models.<span>
</span>For the Madagascar ad hoc model, we set
sedimentation, or “ErosionSourceValue” as a function of
runoff, hydrologic maturity (i.e., vegetation
characteristics), and soil erodibility (Figure 13).<span>
</span>We set hydrologic maturity as a function of
vegetation type and cover.<span> </span>Priors for
vegetation type and cover were qualitatively estimated
based on their corresponding GIS datasets for
Madagascar.<span> </span>We estimated the <span>
conditional probability table</span> for hydrologic
maturity by pegging the corners for highest hydrologic
maturity under conditions of very high cover and
forest/wetland vegetation type, the lowest hydrologic
maturity for very low cover and cropland/developed
vegetation type, and interpolating intermediate values,
with forests and wetland having the highest maturity,
followed by degraded forests, savannas, and
cropland/developed.<span> </span>We set runoff as
a function of monthly precipitation and tropical storm
probability<a href="#_ftn1" name="_ftnref1" title=""><span class="style25"><span><![if !supportFootnotes]>[1]<![endif]></span></span></a>.<span>
</span>We set the <span>conditional probability table</span>
by pegging the corners for high precipitation and/or
high tropical storm probability leading to the greatest
runoff and vice versa, with intermediate values
interpolated.<span> </span>We estimated priors for
tropical storm probability using qualitatively estimates
from spatial data, while leaving those for monthly
precipitation uninformed (i.e., 20-20-20-20-20).<span>
</span>We set soil erodibility as a function of
hydrologic soils group (i.e., potential infiltration),
soil texture, and slope.<span> </span>We set
erodibility as greatest on steep, coarse soils with high
infiltration potential (HSG “A”), and vice versa, with
intermediate values interpolated.<span> </span>We
qualitatively estimated priors for slope from spatial
data, while leaving those for texture and HSG were
uninformed.<span> </span>We set erosion source
value at zero for all soils with very low erodibility,
set it at its highest on very erodible soils with very
high runoff and no hydrologic maturity, and interpolated
intermediate values.<span> </span>We discretized
percent vegetation cover using equal intervals and all
other continuous variables using natural breaks.</p>
<p class="MsoNormal">
<o:p> </o:p><o:p> </o:p></p>
<div class="style8">
<h5 class="style10">Assumptions</h5>
<p class="MsoNormal"><span><b>Sediment regulation
source value</b>. Spatial datasets of soil loss and
RUSLE/SEDMOD coefficients are available globally as
a 0.5 degree<sup>2</sup> raster (Yang et al. 2003)
and for the western United States by 8-digit HUC
watershed (USEPA 2010). Use of these
deterministic models, where appropriate, can reduce
the need for using probabilistic models of
sedimentation. However, USLE and RUSLE have
several well-known limitations (Roose 1996): 1) they
apply only to sheet erosion versus linear or mass
erosion; 2) they have only been tested in regions
with 1-20% slopes and are inappropriate for areas
with steeper slopes or young mountains where greater
erosion is possible; 3) energy-rainfall
relationships have been best tested for the U.S.
Great Plains, meaning that locally appropriate
rainfall runoff erosivity coefficients must be
carefully developed and applied; 4) data are not
valid for individual storms but averages; a Modified
USLE (Williams 1975) must be used to model sediment
loads produced by a single storm; and 5) The
equations simplify interactions between factors to
attempt to isolate the relative effects of each.
Thus USLE/RUSLE are likely most appropriate in level
to moderately hilly landscapes similar to the
central United States; different models may be more
appropriate in other parts of the world.
<o:p></o:p>
</span></p>
<p class="MsoNormal"><span>
<o:p> </o:p></span></p>
<p class="MsoNormal"><span>Several spatial ecosystem
services mapping papers have addressed
sedimentation. While Eade and Moran (1996) and
Tallis et al. (2010) modeled sedimentation using
USLE, Egoh et al. (2008) and Wendland et al. (2010)
used other proxy data to model sedimentation.
Egoh et al. combined local estimates of soil erosion
potential with expert rankings of the ability of
vegetation cover to prevent erosion. Based on
Quinton et al.’s (1997) work in semiarid Spain, Egoh
et al. note that </span>soil erosion is slightly
reduced with about 30% vegetation cover and
significantly reduced with about 70% vegetation
cover.<span> </span>By combining areas of high
erosion potential and <30, >30, or >70% vegetation
cover, Egoh et al. map the value of vegetation for
erosion control.<span> </span>Wendland et al.,
noting the established link between forest cover and
sedimentation for Madagascar (Albietz 2007), map
upstream forest cover from population centers,
irrigated rice fields, and mangroves – areas that
benefit from sediment-free water.</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"><b><span>Sediment regulation
sinks</span></b><span>. We only consider
the deposition of sediment in floodplains and
reservoirs, as opposed to sediment carried and
deposited by overland flow. We define sediment
deposition (“ErosionSink”) to be a function of
stream/floodplain variables – stream gradient,
floodplain vegetation cover, and floodplain width –
and artificial structures that narrow the floodplain
(levees) or trap sediment (dams) (Figure 15).
We assume deposition to be greatest in low-gradient
streams with wide floodplains and high levels of
vegetation cover, and lowest under the opposite
conditions, with intermediate values interpolated.
The presence of levees automatically narrows the
floodplain from its natural width to “very narrow,”
reducing sediment deposition. The presence of
reservoirs, which create slack water flow
conditions, leads to high deposition levels in all
circumstances. Priors for all nodes are
qualitative estimates based on GIS data. The
erosion sink models for Western Washington and
Madagascar are identical, except that prior
probabilities for artificial infrastructure are set
much lower for less developed settings (e.g.,
Madagascar) versus hydrologic systems with greater
degrees of flow alteration (e.g., Western
Washington). We discretized floodplain
vegetation percent cover using natural breaks and
stream gradient using breakpoints of 0-2% for low
gradient streams, 2-5% for moderate gradient
streams, and >5% for high gradient streams. <o:p></o:p>
</span></p>
<p class="MsoNormal">
<o:p></o:p>
</p>
<p class="MsoNormal"><span>We note that
process-based models of sediment transport and
deposition exist, but may be difficult to apply at
the landscape scale using publicly available GIS
data. These may also be event-based models, while
our ad hoc model simplifies this process by removing
the temporal component and considering only
landscape-scale metrics. For example, we
recognize that even in wide floodplains with high
vegetation cover, low stream gradient, and no
artificial structures, there will be periods of both
high and low sedimentation based on streamflow
conditions and sediment loads.<o:p></o:p></span></p>
<p class="MsoNormal">
<o:p></o:p>
</p>
<p class="MsoNormal"><b><span>Sediment regulation
use</span></b><span>. While not explicitly
incorporating ecosystem service flow models, both
Tallis et al. (2010) and Wendland et al. (2010)
incorporate the concept of beneficiaries in their
sedimentation models. Tallis et al. map the
locations of reservoirs where avoided sedimentation
is a benefit, and Wendland et al. map human
population density (for drinking water), mangroves
(for avoided sedimentation of fish habitat), and
rice fields (for avoided crop damage). Mapping
these beneficiaries can often be done with a single
spatial data layer or simple GIS operations rather
than Bayesian networks. For instance, we can
map: 1) the location of navigation infrastructure
(where sedimentation is undesirable), 2) floodplain
farmers (where sedimentation may be beneficial or
undesirable, by a simple overlay of floodplains and
farmland), or 3) erosion-prone farmers (where
erosion is undesirable, by intersecting erosion
source value and farmland). Hydroelectric dams
and public water supply intakes can be mapped, but
might also be included in Bayesian networks with
their supply areas and population density, with
water supplies and hydroelectric generation capacity
to serve larger populations being weighted to create
a greater degree of use of avoided sedimentation.
Similarly, the benefits of avoided sedimentation to
fisheries can be mapped by aggregating sites where
fishing takes place (lakes, rivers, coast), key
habitats for fish (coastal wetlands, salmon spawning
grounds for Western Washington, coral reefs,
seagrass beds, and mangroves for Madagascar),
population density, and public access to fishing.
Priors for the more complex fisheries models are
based on qualitative estimates from existing spatial
data. We set the greatest values in the
conditional probability table for fisheries in areas
with public access (if relevant), fishing sites
and/or habitat features present, and moderate to low
population density (assuming that use is simply
lower with less human presence and declines at high
population density as pollution and habitat
destruction accompany high density urbanized
environments.<o:p></o:p></span></p>
<p class="MsoNormal">
<o:p></o:p>
</p>
<p class="MsoNormal"><b><span>Sediment regulation
flow</span></b><span>. Since we are not
modeling wind-based erosion for this service, we
model sediment flows using a simple hydrologic
model. HydroSheds data (Lehner et al. 2008)
for flow direction are used to route water across
the landscape. While this is admittedly a
highly simplistic way to move water and
water-related ecosystem service carriers (e.g.,
drinking water, flood water, suspended sediment,
dissolved nutrients), it has the benefit of being
applicable at variable spatial scales and at any
location on Earth. Future work on ARIES will
seek to incorporate appropriate existing hydrologic
models to route water and water-related ecosystem
service carriers across the landscape at variable
spatial scales and under variable environmental
conditions (e.g., using appropriate and different
models at large vs. small spatial scales and in arid
versus humid ecological systems).<o:p></o:p></span></p>
<p class="MsoNormal"> </p>
<h5 class="style10">Spatial data</h5>
<p class="MsoNormal"> </p>
<p class="MsoNormal">
<table border="1" cellpadding="0" cellspacing="0" class="style22" style="mso-border-alt: solid black .5pt; mso-yfti-tbllook: 191; mso-padding-alt: 0pt 5.4pt 0pt 5.4pt; mso-border-insideh: .5pt solid black; mso-border-insidev: .5pt solid black">
<tr>
<td valign="top" width="98">
<p class="style19"><strong>Model</strong><o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19"><strong>Layer</strong><o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19"><strong>Source</strong><o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19"><strong>Resolution
</strong> <o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19"><strong>Extent</strong><o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><strong>Year</strong><o:p></o:p></p>
</td>
</tr>
<tr>
<td rowspan="19" valign="top" width="98">
<p class="style19">Source – Western
Washington<o:p></o:p></p>
<p class="style19"><o:p> </o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Rainfall runoff erosivity
index<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">U.S. EPA (2010)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">Vector shapefiles (HUC 8
watersheds)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western U.S.<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Soil erodibility factor<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">U.S. EPA (2010)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">Vector shapefiles (HUC 8
watersheds)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western U.S.<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Slope steepness & length<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">U.S. EPA (2010)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">Vector shapefiles (HUC 8
watersheds)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western U.S.<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Cover management<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">U.S. EPA (2010)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">Vector shapefiles (HUC 8
watersheds)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western U.S.<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Conservation practice<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">U.S. EPA (2010)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">Vector shapefiles (HUC 8
watersheds)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western U.S.<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Average annual soil loss<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">U.S. EPA (2010)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">Vector shapefiles (HUC 8
watersheds)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western U.S.<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Slope<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Derived from National
Elevation Dataset<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">30 x 30 m<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western Washington<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">n/a<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Hydrologic soils group<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">SSURGO soil data<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">30 x 30 m (rasterized
vector data)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western Washington<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">n/a<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Soil texture<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">SSURGO soil data<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">30 x 30 m (rasterized
vector data)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western Washington<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">n/a<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Slope stability<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Washington Dept. of
Natural Resources<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">30 x 30 m<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western Washington<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Soil erodibility<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">U.S. EPA (2010)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">Vector shapefiles (HUC 8
watersheds)<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western U.S.<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Monthly precipitation<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">USDA-NRCS Geospatial Data
Gateway<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">800 x 800 m<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western Washington<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">1971-2000<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Monthly temperatures<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">SAGE/Univ. of Wisconsin<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">1961-1990<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Monthly snowmelt<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Univ. of Delaware<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">1950-1999<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Runoff<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">SAGE/Univ. of Wisconsin<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="MsoNormal"><span class="style19">
0.5 degree</span><span><sup class="style19">2</sup><o:p></o:p></span></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19"><o:p> </o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Snow presence<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Washington State Dept. of
Natural Resources<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">Vector shapefile<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Washington State<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">1991<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Successional stage<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">BLM/Interagency
Vegetation Mapping Project<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">25 x 25 m<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Western Washington &
Oregon<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">1996<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Vegetation % cover<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">NLCD 2001<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">30 x 30 m<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="MsoNormal"><span class="style19">
United States</span><o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2001<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Vegetation type<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">NLCD 2001<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">30 x 30 m<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="MsoNormal"><span class="style19">
United States</span><o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2001<o:p></o:p></p>
</td>
</tr>
<tr>
<td rowspan="14" valign="top" width="98">
<p class="style19">Source - Madagascar<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Rainfall runoff erosivity
index<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Yang et al. (2003)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2003<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Soil erodibility factor<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Yang et al. (2003)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2003<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Slope steepness & length<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Yang et al. (2003)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2003<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Cover management<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Yang et al. (2003)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2003<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Conservation practice<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Yang et al. (2003)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2003<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Average annual soil loss<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Yang et al. (2003)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2003<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Slope<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Derived from global SRTM
data<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">90 x 90 m<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">n/a<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Hydrologic soils group<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Gately (2008) using FAO
soils data<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="MsoNormal"><span class="style19">
0.083 degrees</span><span><sup class="style19">2</sup><o:p></o:p></span></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">n/a<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Soil texture<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">FAO Soils<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="MsoNormal"><span class="style19">
0.083 degrees</span><span><sup class="style19">2</sup><o:p></o:p></span></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">n/a<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Soil erodibility<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">Yang et al. (2003)<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">0.5 x 0.5 degree<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">2003<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Monthly precipitation<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">WorldClim<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="MsoNormal"><span class="style19">
30 arc-seconds</span><span><sup>2<o:p></o:p></sup></span></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">1950-2000<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Tropical storm
probability<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">CIESIN/ Columbia Univ.<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="style19">2.5 x 2.5 minute<o:p></o:p></p>
</td>
<td valign="top" width="94">
<p class="style19">Global<o:p></o:p></p>
</td>
<td valign="top" width="79">
<p class="style19">1981-2000<o:p></o:p></p>
</td>
</tr>
<tr>
<td valign="top" width="110">
<p class="style19">Vegetation % cover<o:p></o:p></p>
</td>
<td valign="top" width="110">
<p class="style19">GLCF/Univ. of Maryland<o:p></o:p></p>
</td>
<td valign="top" width="100">
<p class="MsoNormal"><span class="style19">1
km</span><span><sup class="style19">2</sup><o:p></o:p></span></p>
</td>
<td valign="top" width="94">
<p class="style19">Global (processed only
for Africa)<o:p></o:p></p>