-
Notifications
You must be signed in to change notification settings - Fork 25
/
flux_pipeline.py
729 lines (634 loc) · 25.8 KB
/
flux_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
import io
import math
import random
import warnings
from typing import TYPE_CHECKING, Callable, List, Optional, OrderedDict, Union
import numpy as np
from PIL import Image
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=DeprecationWarning)
import torch
from einops import rearrange
from flux_emphasis import get_weighted_text_embeddings_flux
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.benchmark_limit = 20
torch.set_float32_matmul_precision("high")
from pybase64 import standard_b64decode
from torch._dynamo import config
from torch._inductor import config as ind_config
config.cache_size_limit = 10000000000
ind_config.shape_padding = True
import platform
from loguru import logger
from torchvision.transforms import functional as TF
from tqdm import tqdm
import lora_loading
from image_encoder import ImageEncoder
from util import (
ModelSpec,
ModelVersion,
into_device,
into_dtype,
load_config_from_path,
load_models_from_config,
)
if platform.system() == "Windows":
MAX_RAND = 2**16 - 1
else:
MAX_RAND = 2**32 - 1
if TYPE_CHECKING:
from modules.autoencoder import AutoEncoder
from modules.conditioner import HFEmbedder
from modules.flux_model import Flux
class FluxPipeline:
"""
FluxPipeline is a class that provides a pipeline for generating images using the Flux model.
It handles input preparation, timestep generation, noise generation, device management
and model compilation.
"""
def __init__(
self,
name: str,
offload: bool = False,
clip: "HFEmbedder" = None,
t5: "HFEmbedder" = None,
model: "Flux" = None,
ae: "AutoEncoder" = None,
dtype: torch.dtype = torch.float16,
verbose: bool = False,
flux_device: torch.device | str = "cuda:0",
ae_device: torch.device | str = "cuda:1",
clip_device: torch.device | str = "cuda:1",
t5_device: torch.device | str = "cuda:1",
config: ModelSpec = None,
debug: bool = False,
):
"""
Initialize the FluxPipeline class.
This class is responsible for preparing input tensors for the Flux model, generating
timesteps and noise, and handling device management for model offloading.
"""
if config is None:
raise ValueError("ModelSpec config is required!")
self.debug = debug
self.name = name
self.device_flux = into_device(flux_device)
self.device_ae = into_device(ae_device)
self.device_clip = into_device(clip_device)
self.device_t5 = into_device(t5_device)
self.dtype = into_dtype(dtype)
self.offload = offload
self.clip: "HFEmbedder" = clip
self.t5: "HFEmbedder" = t5
self.model: "Flux" = model
self.ae: "AutoEncoder" = ae
self.rng = torch.Generator(device="cpu")
self.img_encoder = ImageEncoder()
self.verbose = verbose
self.ae_dtype = torch.bfloat16
self.config = config
self.offload_text_encoder = config.offload_text_encoder
self.offload_vae = config.offload_vae
self.offload_flow = config.offload_flow
# If models are not offloaded, move them to the appropriate devices
if not self.offload_flow:
self.model.to(self.device_flux)
if not self.offload_vae:
self.ae.to(self.device_ae)
if not self.offload_text_encoder:
self.clip.to(self.device_clip)
self.t5.to(self.device_t5)
# compile the model if needed
if config.compile_blocks or config.compile_extras:
self.compile()
def set_seed(
self, seed: int | None = None, seed_globally: bool = False
) -> torch.Generator:
if isinstance(seed, (int, float)):
seed = int(abs(seed)) % MAX_RAND
cuda_generator = torch.Generator("cuda").manual_seed(seed)
elif isinstance(seed, str):
try:
seed = abs(int(seed)) % MAX_RAND
except Exception as e:
logger.warning(
f"Recieved string representation of seed, but was not able to convert to int: {seed}, using random seed"
)
seed = abs(self.rng.seed()) % MAX_RAND
cuda_generator = torch.Generator("cuda").manual_seed(seed)
else:
seed = abs(self.rng.seed()) % MAX_RAND
cuda_generator = torch.Generator("cuda").manual_seed(seed)
if seed_globally:
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
return cuda_generator, seed
def load_lora(
self,
lora_path: Union[str, OrderedDict[str, torch.Tensor]],
scale: float,
name: Optional[str] = None,
):
"""
Loads a LoRA checkpoint into the Flux flow transformer.
Currently supports LoRA checkpoints from either diffusers checkpoints which usually start with transformer.[...],
or loras which contain keys which start with lora_unet_[...].
Args:
lora_path (str | OrderedDict[str, torch.Tensor]): Path to the LoRA checkpoint or an ordered dictionary containing the LoRA weights.
scale (float): Scaling factor for the LoRA weights.
name (str): Name of the LoRA checkpoint, optionally can be left as None, since it only acts as an identifier.
"""
self.model.load_lora(path=lora_path, scale=scale, name=name)
def unload_lora(self, path_or_identifier: str):
"""
Unloads the LoRA checkpoint from the Flux flow transformer.
Args:
path_or_identifier (str): Path to the LoRA checkpoint or the name given to the LoRA checkpoint when it was loaded.
"""
self.model.unload_lora(path_or_identifier=path_or_identifier)
@torch.inference_mode()
def compile(self):
"""
Compiles the model and extras.
First, if:
- A) Checkpoint which already has float8 quantized weights and tuned input scales.
In which case, it will not run warmups since it assumes the input scales are already tuned.
- B) Checkpoint which has not been quantized, in which case it will be quantized
and the input scales will be tuned. via running a warmup loop.
- If the model is flux-schnell, it will run 3 warmup loops since each loop is 4 steps.
- If the model is flux-dev, it will run 1 warmup loop for 12 steps.
"""
# Run warmups if the checkpoint is not prequantized
if not self.config.prequantized_flow:
logger.info("Running warmups for compile...")
warmup_dict = dict(
prompt="A beautiful test image used to solidify the fp8 nn.Linear input scales prior to compilation 😉",
height=768,
width=768,
num_steps=12,
guidance=3.5,
seed=10,
)
if self.config.version == ModelVersion.flux_schnell:
warmup_dict["num_steps"] = 4
for _ in range(3):
self.generate(**warmup_dict)
else:
self.generate(**warmup_dict)
# Compile the model and extras
to_gpu_extras = [
"vector_in",
"img_in",
"txt_in",
"time_in",
"guidance_in",
"final_layer",
"pe_embedder",
]
if self.config.compile_blocks:
for block in self.model.double_blocks:
block.compile()
for block in self.model.single_blocks:
block.compile()
if self.config.compile_extras:
for extra in to_gpu_extras:
getattr(self.model, extra).compile()
@torch.inference_mode()
def prepare(
self,
img: torch.Tensor,
prompt: str | list[str],
target_device: torch.device = torch.device("cuda:0"),
target_dtype: torch.dtype = torch.float16,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Prepare input tensors for the Flux model.
This function processes the input image and text prompt, converting them into
the appropriate format and embedding representations required by the model.
Args:
img (torch.Tensor): Input image tensor of shape (batch_size, channels, height, width).
prompt (str | list[str]): Text prompt or list of prompts guiding the image generation.
target_device (torch.device, optional): The target device for the output tensors.
Defaults to torch.device("cuda:0").
target_dtype (torch.dtype, optional): The target data type for the output tensors.
Defaults to torch.float16.
Returns:
tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing:
- img: Processed image tensor.
- img_ids: Image position IDs.
- vec: Clip text embedding vector.
- txt: T5 text embedding hidden states.
- txt_ids: Text position IDs.
Note:
This function handles the necessary device management for text encoder offloading
if enabled in the configuration.
"""
bs, c, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img = img.unfold(2, 2, 2).unfold(3, 2, 2).permute(0, 2, 3, 1, 4, 5)
img = img.reshape(img.shape[0], -1, img.shape[3] * img.shape[4] * img.shape[5])
assert img.shape == (
bs,
(h // 2) * (w // 2),
c * 2 * 2,
), f"{img.shape} != {(bs, (h//2)*(w//2), c*2*2)}"
if img.shape[0] == 1 and bs > 1:
img = img[None].repeat_interleave(bs, dim=0)
img_ids = torch.zeros(
h // 2, w // 2, 3, device=target_device, dtype=target_dtype
)
img_ids[..., 1] = (
img_ids[..., 1]
+ torch.arange(h // 2, device=target_device, dtype=target_dtype)[:, None]
)
img_ids[..., 2] = (
img_ids[..., 2]
+ torch.arange(w // 2, device=target_device, dtype=target_dtype)[None, :]
)
img_ids = img_ids[None].repeat(bs, 1, 1, 1).flatten(1, 2)
if self.offload_text_encoder:
self.clip.to(device=self.device_clip)
self.t5.to(device=self.device_t5)
# get the text embeddings
vec, txt, txt_ids = get_weighted_text_embeddings_flux(
self,
prompt,
num_images_per_prompt=bs,
device=self.device_clip,
target_device=target_device,
target_dtype=target_dtype,
debug=self.debug,
)
# offload text encoder to cpu if needed
if self.offload_text_encoder:
self.clip.to("cpu")
self.t5.to("cpu")
torch.cuda.empty_cache()
return img, img_ids, vec, txt, txt_ids
@torch.inference_mode()
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(
self, x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
@torch.inference_mode()
def get_schedule(
self,
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
"""Generates a schedule of timesteps for the given number of steps and image sequence length."""
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# eastimate mu based on linear estimation between two points
mu = self.get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = self.time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
@torch.inference_mode()
def get_noise(
self,
num_samples: int,
height: int,
width: int,
generator: torch.Generator,
dtype=None,
device=None,
) -> torch.Tensor:
"""Generates a latent noise tensor of the given shape and dtype on the given device."""
if device is None:
device = self.device_flux
if dtype is None:
dtype = self.dtype
return torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
device=device,
dtype=dtype,
generator=generator,
requires_grad=False,
)
@torch.inference_mode()
def into_bytes(self, x: torch.Tensor, jpeg_quality: int = 99) -> io.BytesIO:
"""Converts the image tensor to bytes."""
# bring into PIL format and save
num_images = x.shape[0]
images: List[torch.Tensor] = []
for i in range(num_images):
x = (
x[i]
.clamp(-1, 1)
.add(1.0)
.mul(127.5)
.clamp(0, 255)
.contiguous()
.type(torch.uint8)
)
images.append(x)
if len(images) == 1:
im = images[0]
else:
im = torch.vstack(images)
im = self.img_encoder.encode_torch(im, quality=jpeg_quality)
images.clear()
return im
@torch.inference_mode()
def load_init_image_if_needed(
self, init_image: torch.Tensor | str | Image.Image | np.ndarray
) -> torch.Tensor:
"""
Loads the initial image if it is a string, numpy array, or PIL.Image,
if torch.Tensor, expects it to be in the correct format and returns it as is.
"""
if isinstance(init_image, str):
try:
init_image = Image.open(init_image)
except Exception as e:
init_image = Image.open(
io.BytesIO(standard_b64decode(init_image.split(",")[-1]))
)
init_image = torch.from_numpy(np.array(init_image)).type(torch.uint8)
elif isinstance(init_image, np.ndarray):
init_image = torch.from_numpy(init_image).type(torch.uint8)
elif isinstance(init_image, Image.Image):
init_image = torch.from_numpy(np.array(init_image)).type(torch.uint8)
return init_image
@torch.inference_mode()
def vae_decode(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""Decodes the latent tensor to the pixel space."""
if self.offload_vae:
self.ae.to(self.device_ae)
x = x.to(self.device_ae)
else:
x = x.to(self.device_ae)
x = self.unpack(x.float(), height, width)
with torch.autocast(
device_type=self.device_ae.type, dtype=torch.bfloat16, cache_enabled=False
):
x = self.ae.decode(x)
if self.offload_vae:
self.ae.to("cpu")
torch.cuda.empty_cache()
return x
def unpack(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
@torch.inference_mode()
def resize_center_crop(
self, img: torch.Tensor, height: int, width: int
) -> torch.Tensor:
"""Resizes and crops the image to the given height and width."""
img = TF.resize(img, min(width, height))
img = TF.center_crop(img, (height, width))
return img
@torch.inference_mode()
def preprocess_latent(
self,
init_image: torch.Tensor | np.ndarray = None,
height: int = 720,
width: int = 1024,
num_steps: int = 20,
strength: float = 1.0,
generator: torch.Generator = None,
num_images: int = 1,
) -> tuple[torch.Tensor, List[float]]:
"""
Preprocesses the latent tensor for the given number of steps and image sequence length.
Also, if an initial image is provided, it is vae encoded and injected with the appropriate noise
given the strength and number of steps replacing the latent tensor.
"""
# prepare input
if init_image is not None:
if isinstance(init_image, np.ndarray):
init_image = torch.from_numpy(init_image)
init_image = (
init_image.permute(2, 0, 1)
.contiguous()
.to(self.device_ae, dtype=self.ae_dtype)
.div(127.5)
.sub(1)[None, ...]
)
init_image = self.resize_center_crop(init_image, height, width)
with torch.autocast(
device_type=self.device_ae.type,
dtype=torch.bfloat16,
cache_enabled=False,
):
if self.offload_vae:
self.ae.to(self.device_ae)
init_image = (
self.ae.encode(init_image)
.to(dtype=self.dtype, device=self.device_flux)
.repeat(num_images, 1, 1, 1)
)
if self.offload_vae:
self.ae.to("cpu")
torch.cuda.empty_cache()
x = self.get_noise(
num_images,
height,
width,
device=self.device_flux,
dtype=self.dtype,
generator=generator,
)
timesteps = self.get_schedule(
num_steps=num_steps,
image_seq_len=x.shape[-1] * x.shape[-2] // 4,
shift=(self.name != "flux-schnell"),
)
if init_image is not None:
t_idx = int((1 - strength) * num_steps)
t = timesteps[t_idx]
timesteps = timesteps[t_idx:]
x = t * x + (1.0 - t) * init_image
return x, timesteps
@torch.inference_mode()
def generate(
self,
prompt: str,
width: int = 720,
height: int = 1024,
num_steps: int = 24,
guidance: float = 3.5,
seed: int | None = None,
init_image: torch.Tensor | str | Image.Image | np.ndarray | None = None,
strength: float = 1.0,
silent: bool = False,
num_images: int = 1,
return_seed: bool = False,
jpeg_quality: int = 99,
) -> io.BytesIO:
"""
Generate images based on the given prompt and parameters.
Args:
prompt `(str)`: The text prompt to guide the image generation.
width `(int, optional)`: Width of the generated image. Defaults to 720.
height `(int, optional)`: Height of the generated image. Defaults to 1024.
num_steps `(int, optional)`: Number of denoising steps. Defaults to 24.
guidance `(float, optional)`: Guidance scale for text-to-image generation. Defaults to 3.5.
seed `(int | None, optional)`: Random seed for reproducibility. If None, a random seed is used. Defaults to None.
init_image `(torch.Tensor | str | Image.Image | np.ndarray | None, optional)`: Initial image for image-to-image generation. Defaults to None.
-- note: if the image's height/width do not match the height/width of the generated image, the image is resized and centered cropped to match the height/width arguments.
-- If a string is provided, it is assumed to be either a path to an image file or a base64 encoded image.
-- If a numpy array is provided, it is assumed to be an RGB numpy array of shape (height, width, 3) and dtype uint8.
-- If a PIL.Image is provided, it is assumed to be an RGB PIL.Image.
-- If a torch.Tensor is provided, it is assumed to be a torch.Tensor of shape (height, width, 3) and dtype uint8 with range [0, 255].
strength `(float, optional)`: Strength of the init_image in image-to-image generation. Defaults to 1.0.
silent `(bool, optional)`: If True, suppresses progress bar. Defaults to False.
num_images `(int, optional)`: Number of images to generate. Defaults to 1.
return_seed `(bool, optional)`: If True, returns the seed along with the generated image. Defaults to False.
jpeg_quality `(int, optional)`: Quality of the JPEG compression. Defaults to 99.
Returns:
io.BytesIO: Generated image(s) in bytes format.
int: Seed used for generation (only if return_seed is True).
"""
num_steps = 4 if self.name == "flux-schnell" else num_steps
init_image = self.load_init_image_if_needed(init_image)
# allow for packing and conversion to latent space
height = 16 * (height // 16)
width = 16 * (width // 16)
generator, seed = self.set_seed(seed)
if not silent:
logger.info(f"Generating with:\nSeed: {seed}\nPrompt: {prompt}")
# preprocess the latent
img, timesteps = self.preprocess_latent(
init_image=init_image,
height=height,
width=width,
num_steps=num_steps,
strength=strength,
generator=generator,
num_images=num_images,
)
# prepare inputs
img, img_ids, vec, txt, txt_ids = map(
lambda x: x.contiguous(),
self.prepare(
img=img,
prompt=prompt,
target_device=self.device_flux,
target_dtype=self.dtype,
),
)
# this is ignored for schnell
guidance_vec = torch.full(
(img.shape[0],), guidance, device=self.device_flux, dtype=self.dtype
)
t_vec = None
# dispatch to gpu if offloaded
if self.offload_flow:
self.model.to(self.device_flux)
# perform the denoising loop
for t_curr, t_prev in tqdm(
zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1, disable=silent
):
if t_vec is None:
t_vec = torch.full(
(img.shape[0],),
t_curr,
dtype=self.dtype,
device=self.device_flux,
)
else:
t_vec = t_vec.reshape((img.shape[0],)).fill_(t_curr)
pred = self.model.forward(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
img = img + (t_prev - t_curr) * pred
# offload the model to cpu if needed
if self.offload_flow:
self.model.to("cpu")
torch.cuda.empty_cache()
# decode latents to pixel space
img = self.vae_decode(img, height, width)
if return_seed:
return self.into_bytes(img, jpeg_quality=jpeg_quality), seed
return self.into_bytes(img, jpeg_quality=jpeg_quality)
@classmethod
def load_pipeline_from_config_path(
cls, path: str, flow_model_path: str = None, debug: bool = False, **kwargs
) -> "FluxPipeline":
with torch.inference_mode():
config = load_config_from_path(path)
if flow_model_path:
config.ckpt_path = flow_model_path
for k, v in kwargs.items():
if hasattr(config, k):
logger.info(
f"Overriding config {k}:{getattr(config, k)} with value {v}"
)
setattr(config, k, v)
return cls.load_pipeline_from_config(config, debug=debug)
@classmethod
def load_pipeline_from_config(
cls, config: ModelSpec, debug: bool = False
) -> "FluxPipeline":
from float8_quantize import quantize_flow_transformer_and_dispatch_float8
with torch.inference_mode():
if debug:
logger.info(
f"Loading as prequantized flow transformer? {config.prequantized_flow}"
)
models = load_models_from_config(config)
config = models.config
flux_device = into_device(config.flux_device)
ae_device = into_device(config.ae_device)
clip_device = into_device(config.text_enc_device)
t5_device = into_device(config.text_enc_device)
flux_dtype = into_dtype(config.flow_dtype)
flow_model = models.flow
if not config.prequantized_flow:
flow_model = quantize_flow_transformer_and_dispatch_float8(
flow_model,
flux_device,
offload_flow=config.offload_flow,
swap_linears_with_cublaslinear=flux_dtype == torch.float16,
flow_dtype=flux_dtype,
quantize_modulation=config.quantize_modulation,
quantize_flow_embedder_layers=config.quantize_flow_embedder_layers,
)
else:
flow_model.eval().requires_grad_(False)
return cls(
name=config.version,
clip=models.clip,
t5=models.t5,
model=flow_model,
ae=models.ae,
dtype=flux_dtype,
verbose=False,
flux_device=flux_device,
ae_device=ae_device,
clip_device=clip_device,
t5_device=t5_device,
config=config,
debug=debug,
)