-
Notifications
You must be signed in to change notification settings - Fork 25
/
float8_quantize.py
496 lines (461 loc) · 18.2 KB
/
float8_quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
from loguru import logger
import torch
import torch.nn as nn
from torch.nn import init
import math
from torch.compiler import is_compiling
from torch import __version__
from torch.version import cuda
from modules.flux_model import Modulation
IS_TORCH_2_4 = __version__ < (2, 4, 9)
LT_TORCH_2_4 = __version__ < (2, 4)
if LT_TORCH_2_4:
if not hasattr(torch, "_scaled_mm"):
raise RuntimeError(
"This version of PyTorch is not supported. Please upgrade to PyTorch 2.4 with CUDA 12.4 or later."
)
CUDA_VERSION = float(cuda) if cuda else 0
if CUDA_VERSION < 12.4:
raise RuntimeError(
f"This version of PyTorch is not supported. Please upgrade to PyTorch 2.4 with CUDA 12.4 or later got torch version {__version__} and CUDA version {cuda}."
)
try:
from cublas_ops import CublasLinear
except ImportError:
CublasLinear = type(None)
class F8Linear(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=torch.float16,
float8_dtype=torch.float8_e4m3fn,
float_weight: torch.Tensor = None,
float_bias: torch.Tensor = None,
num_scale_trials: int = 12,
input_float8_dtype=torch.float8_e5m2,
) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.float8_dtype = float8_dtype
self.input_float8_dtype = input_float8_dtype
self.input_scale_initialized = False
self.weight_initialized = False
self.max_value = torch.finfo(self.float8_dtype).max
self.input_max_value = torch.finfo(self.input_float8_dtype).max
factory_kwargs = {"dtype": dtype, "device": device}
if float_weight is None:
self.weight = nn.Parameter(
torch.empty((out_features, in_features), **factory_kwargs)
)
else:
self.weight = nn.Parameter(
float_weight, requires_grad=float_weight.requires_grad
)
if float_bias is None:
if bias:
self.bias = nn.Parameter(
torch.empty(out_features, **factory_kwargs),
)
else:
self.register_parameter("bias", None)
else:
self.bias = nn.Parameter(float_bias, requires_grad=float_bias.requires_grad)
self.num_scale_trials = num_scale_trials
self.input_amax_trials = torch.zeros(
num_scale_trials, requires_grad=False, device=device, dtype=torch.float32
)
self.trial_index = 0
self.register_buffer("scale", None)
self.register_buffer(
"input_scale",
None,
)
self.register_buffer(
"float8_data",
None,
)
self.scale_reciprocal = self.register_buffer("scale_reciprocal", None)
self.input_scale_reciprocal = self.register_buffer(
"input_scale_reciprocal", None
)
def _load_from_state_dict(
self,
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
sd = {k.replace(prefix, ""): v for k, v in state_dict.items()}
if "weight" in sd:
if (
"float8_data" not in sd
or sd["float8_data"] is None
and sd["weight"].shape == (self.out_features, self.in_features)
):
# Initialize as if it's an F8Linear that needs to be quantized
self._parameters["weight"] = nn.Parameter(
sd["weight"], requires_grad=False
)
if "bias" in sd:
self._parameters["bias"] = nn.Parameter(
sd["bias"], requires_grad=False
)
self.quantize_weight()
elif sd["float8_data"].shape == (
self.out_features,
self.in_features,
) and sd["weight"] == torch.zeros_like(sd["weight"]):
w = sd["weight"]
# Set the init values as if it's already quantized float8_data
self._buffers["float8_data"] = sd["float8_data"]
self._parameters["weight"] = nn.Parameter(
torch.zeros(
1,
dtype=w.dtype,
device=w.device,
requires_grad=False,
)
)
if "bias" in sd:
self._parameters["bias"] = nn.Parameter(
sd["bias"], requires_grad=False
)
self.weight_initialized = True
# Check if scales and reciprocals are initialized
if all(
key in sd
for key in [
"scale",
"input_scale",
"scale_reciprocal",
"input_scale_reciprocal",
]
):
self.scale = sd["scale"].float()
self.input_scale = sd["input_scale"].float()
self.scale_reciprocal = sd["scale_reciprocal"].float()
self.input_scale_reciprocal = sd["input_scale_reciprocal"].float()
self.input_scale_initialized = True
self.trial_index = self.num_scale_trials
elif "scale" in sd and "scale_reciprocal" in sd:
self.scale = sd["scale"].float()
self.input_scale = (
sd["input_scale"].float() if "input_scale" in sd else None
)
self.scale_reciprocal = sd["scale_reciprocal"].float()
self.input_scale_reciprocal = (
sd["input_scale_reciprocal"].float()
if "input_scale_reciprocal" in sd
else None
)
self.input_scale_initialized = (
True if "input_scale" in sd else False
)
self.trial_index = (
self.num_scale_trials if "input_scale" in sd else 0
)
self.input_amax_trials = torch.zeros(
self.num_scale_trials,
requires_grad=False,
dtype=torch.float32,
device=self.weight.device,
)
self.input_scale_initialized = False
self.trial_index = 0
else:
# If scales are not initialized, reset trials
self.input_scale_initialized = False
self.trial_index = 0
self.input_amax_trials = torch.zeros(
self.num_scale_trials, requires_grad=False, dtype=torch.float32
)
else:
raise RuntimeError(
f"Weight tensor not found or has incorrect shape in state dict: {sd.keys()}"
)
else:
raise RuntimeError(
"Weight tensor not found or has incorrect shape in state dict"
)
def quantize_weight(self):
if self.weight_initialized:
return
amax = torch.max(torch.abs(self.weight.data)).float()
self.scale = self.amax_to_scale(amax, self.max_value)
self.float8_data = self.to_fp8_saturated(
self.weight.data, self.scale, self.max_value
).to(self.float8_dtype)
self.scale_reciprocal = self.scale.reciprocal()
self.weight.data = torch.zeros(
1, dtype=self.weight.dtype, device=self.weight.device, requires_grad=False
)
self.weight_initialized = True
def set_weight_tensor(self, tensor: torch.Tensor):
self.weight.data = tensor
self.weight_initialized = False
self.quantize_weight()
def amax_to_scale(self, amax, max_val):
return (max_val / torch.clamp(amax, min=1e-12)).clamp(max=max_val)
def to_fp8_saturated(self, x, scale, max_val):
return (x * scale).clamp(-max_val, max_val)
def quantize_input(self, x: torch.Tensor):
if self.input_scale_initialized:
return self.to_fp8_saturated(x, self.input_scale, self.input_max_value).to(
self.input_float8_dtype
)
elif self.trial_index < self.num_scale_trials:
amax = torch.max(torch.abs(x)).float()
self.input_amax_trials[self.trial_index] = amax
self.trial_index += 1
self.input_scale = self.amax_to_scale(
self.input_amax_trials[: self.trial_index].max(), self.input_max_value
)
self.input_scale_reciprocal = self.input_scale.reciprocal()
return self.to_fp8_saturated(x, self.input_scale, self.input_max_value).to(
self.input_float8_dtype
)
else:
self.input_scale = self.amax_to_scale(
self.input_amax_trials.max(), self.input_max_value
)
self.input_scale_reciprocal = self.input_scale.reciprocal()
self.input_scale_initialized = True
return self.to_fp8_saturated(x, self.input_scale, self.input_max_value).to(
self.input_float8_dtype
)
def reset_parameters(self) -> None:
if self.weight_initialized:
self.weight = nn.Parameter(
torch.empty(
(self.out_features, self.in_features),
**{
"dtype": self.weight.dtype,
"device": self.weight.device,
},
)
)
self.weight_initialized = False
self.input_scale_initialized = False
self.trial_index = 0
self.input_amax_trials.zero_()
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound)
self.quantize_weight()
self.max_value = torch.finfo(self.float8_dtype).max
self.input_max_value = torch.finfo(self.input_float8_dtype).max
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.input_scale_initialized or is_compiling():
x = self.to_fp8_saturated(x, self.input_scale, self.input_max_value).to(
self.input_float8_dtype
)
else:
x = self.quantize_input(x)
prev_dims = x.shape[:-1]
x = x.view(-1, self.in_features)
# float8 matmul, much faster than float16 matmul w/ float32 accumulate on ADA devices!
out = torch._scaled_mm(
x,
self.float8_data.T,
scale_a=self.input_scale_reciprocal,
scale_b=self.scale_reciprocal,
bias=self.bias,
out_dtype=self.weight.dtype,
use_fast_accum=True,
)
if IS_TORCH_2_4:
out = out[0]
out = out.view(*prev_dims, self.out_features)
return out
@classmethod
def from_linear(
cls,
linear: nn.Linear,
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
) -> "F8Linear":
f8_lin = cls(
in_features=linear.in_features,
out_features=linear.out_features,
bias=linear.bias is not None,
device=linear.weight.device,
dtype=linear.weight.dtype,
float8_dtype=float8_dtype,
float_weight=linear.weight.data,
float_bias=(linear.bias.data if linear.bias is not None else None),
input_float8_dtype=input_float8_dtype,
)
f8_lin.quantize_weight()
return f8_lin
@torch.inference_mode()
def recursive_swap_linears(
model: nn.Module,
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
quantize_modulation: bool = True,
ignore_keys: list[str] = [],
) -> None:
"""
Recursively swaps all nn.Linear modules in the given model with F8Linear modules.
This function traverses the model's structure and replaces each nn.Linear
instance with an F8Linear instance, which uses 8-bit floating point
quantization for weights. The original linear layer's weights are deleted
after conversion to save memory.
Args:
model (nn.Module): The PyTorch model to modify.
Note:
This function modifies the model in-place. After calling this function,
all linear layers in the model will be using 8-bit quantization.
"""
for name, child in model.named_children():
if name in ignore_keys:
continue
if isinstance(child, Modulation) and not quantize_modulation:
continue
if isinstance(child, nn.Linear) and not isinstance(
child, (F8Linear, CublasLinear)
):
setattr(
model,
name,
F8Linear.from_linear(
child,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
),
)
del child
else:
recursive_swap_linears(
child,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
quantize_modulation=quantize_modulation,
ignore_keys=ignore_keys,
)
@torch.inference_mode()
def swap_to_cublaslinear(model: nn.Module):
if CublasLinear == type(None):
return
for name, child in model.named_children():
if isinstance(child, nn.Linear) and not isinstance(
child, (F8Linear, CublasLinear)
):
cublas_lin = CublasLinear(
child.in_features,
child.out_features,
bias=child.bias is not None,
dtype=child.weight.dtype,
device=child.weight.device,
)
cublas_lin.weight.data = child.weight.clone().detach()
cublas_lin.bias.data = child.bias.clone().detach()
setattr(model, name, cublas_lin)
del child
else:
swap_to_cublaslinear(child)
@torch.inference_mode()
def quantize_flow_transformer_and_dispatch_float8(
flow_model: nn.Module,
device=torch.device("cuda"),
float8_dtype=torch.float8_e4m3fn,
input_float8_dtype=torch.float8_e5m2,
offload_flow=False,
swap_linears_with_cublaslinear=True,
flow_dtype=torch.float16,
quantize_modulation: bool = True,
quantize_flow_embedder_layers: bool = True,
) -> nn.Module:
"""
Quantize the flux flow transformer model (original BFL codebase version) and dispatch to the given device.
Iteratively pushes each module to device, evals, replaces linear layers with F8Linear except for final_layer, and quantizes.
Allows for fast dispatch to gpu & quantize without causing OOM on gpus with limited memory.
After dispatching, if offload_flow is True, offloads the model to cpu.
if swap_linears_with_cublaslinear is true, and flow_dtype == torch.float16, then swap all linears with cublaslinears for 2x performance boost on consumer GPUs.
Otherwise will skip the cublaslinear swap.
For added extra precision, you can set quantize_flow_embedder_layers to False,
this helps maintain the output quality of the flow transformer moreso than fully quantizing,
at the expense of ~512MB more VRAM usage.
For added extra precision, you can set quantize_modulation to False,
this helps maintain the output quality of the flow transformer moreso than fully quantizing,
at the expense of ~2GB more VRAM usage, but- has a much higher impact on image quality than the embedder layers.
"""
for module in flow_model.double_blocks:
module.to(device)
module.eval()
recursive_swap_linears(
module,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
quantize_modulation=quantize_modulation,
)
torch.cuda.empty_cache()
for module in flow_model.single_blocks:
module.to(device)
module.eval()
recursive_swap_linears(
module,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
quantize_modulation=quantize_modulation,
)
torch.cuda.empty_cache()
to_gpu_extras = [
"vector_in",
"img_in",
"txt_in",
"time_in",
"guidance_in",
"final_layer",
"pe_embedder",
]
for module in to_gpu_extras:
m_extra = getattr(flow_model, module)
if m_extra is None:
continue
m_extra.to(device)
m_extra.eval()
if isinstance(m_extra, nn.Linear) and not isinstance(
m_extra, (F8Linear, CublasLinear)
):
if quantize_flow_embedder_layers:
setattr(
flow_model,
module,
F8Linear.from_linear(
m_extra,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
),
)
del m_extra
elif module != "final_layer":
if quantize_flow_embedder_layers:
recursive_swap_linears(
m_extra,
float8_dtype=float8_dtype,
input_float8_dtype=input_float8_dtype,
quantize_modulation=quantize_modulation,
)
torch.cuda.empty_cache()
if (
swap_linears_with_cublaslinear
and flow_dtype == torch.float16
and CublasLinear != type(None)
):
swap_to_cublaslinear(flow_model)
elif swap_linears_with_cublaslinear and flow_dtype != torch.float16:
logger.warning("Skipping cublas linear swap because flow_dtype is not float16")
if offload_flow:
flow_model.to("cpu")
torch.cuda.empty_cache()
return flow_model