forked from turboderp/exllama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
1063 lines (693 loc) · 37.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
from torch import nn
import torch.nn.functional as F
from safetensors import safe_open
import cuda_ext
import json
import math
from enum import Enum
import threading
import sys
import struct
from typing import List
# Magic numbers
optimal_switch_thd = 6 # Model mostly runs one token at a time, or many. So this probably doesn't matter too much.
class ParsedEnum(Enum):
def __str__(self):
return self.name.lower()
def __repr__(self):
return str(self)
@classmethod
def argparse(cls, s):
try:
return cls[s.upper()]
except KeyError:
return s
class ExLlamaConfig:
class AttentionMethod(ParsedEnum):
PYTORCH_MATMUL = 1 # Regular attention from HF implementation. Dog poop.
PYTORCH_SCALED_DP = 2 # Seems more memory-efficient than xformers
class MatmulMethod(ParsedEnum):
QUANT_ONLY = 1 # Use the quantized matmul
SWITCHED = 2 # Switch between quantized matmul and FP16 reconstruction (best)
PYTORCH_ONLY = 3 # Always reconstruct and perform FP16 matmul
class MLPMethod(ParsedEnum):
NORMAL = 1 # Regular MLP as in LlamaModel (best)
SWITCHED = 2 # Switch between normal and fused MLP
FUSED = 3 # Always use fused MLP
# Load config from Llama config.json
def __init__(self, model_config_path):
with open(model_config_path) as f:
read_config = json.load(f)
# Loaded/automatic settings
self.bos_token_id = read_config["bos_token_id"] # Note that the HF LlamaTokenizer doesn't seem to recognize these automatically
self.eos_token_id = read_config["eos_token_id"]
self.pad_token_id = read_config["pad_token_id"]
self.hidden_size = read_config["hidden_size"]
self.initializer_range = read_config["initializer_range"]
self.intermediate_size = read_config["intermediate_size"]
self.num_attention_heads = read_config["num_attention_heads"]
self.num_hidden_layers = read_config["num_hidden_layers"]
self.num_attention_heads = read_config["num_attention_heads"]
self.rms_norm_eps = read_config["rms_norm_eps"]
self.vocab_size = read_config["vocab_size"]
self.rotary_embedding_base = 10000 # Constant used for pretrained models, leave as is unless retraining
self.head_dim = self.hidden_size // self.num_attention_heads
self.groupsize = None # Autodetected
self.act_order = False # Autodetected
# Required settings
self.model_path = None
# Optional settings
self.stream_layer_interval = 0 # Store every nth layer in system RAM and
self.max_seq_len = 2048 # Reduce to save memory. Can also be increased, but the pretrained models produce degenerate output after 2048 tokens in any case. Should be possible to finetune for longer sequence lengths.
self.attention_method = self.AttentionMethod.PYTORCH_SCALED_DP
self.matmul_method = self.MatmulMethod.SWITCHED
self.mlp_method = self.MLPMethod.NORMAL # Currently no benefit to fused MLP
self.device_map = ExLlamaDeviceMap(self.num_hidden_layers)
self.auto_map = None # List of ints with memory allocation in GB, per CUDA device, overrides device_map
self.dequant = None # Number of layers (per GPU) to de-quantize at load time
# Parse and set list of GPU VRAM allocations
def set_auto_map(self, map_string):
if map_string is None: self.auto_map = None
else: self.auto_map = [float(alloc) for alloc in map_string.split(",")]
# Parse and set number of layers to de-quantize at load, per GPU
def set_dequant(self, dq_string):
if dq_string is None: self.dequant = None
else: self.dequant = [int(alloc) for alloc in dq_string.split(",")]
def _dump_tensor(t, name):
if t is None:
with open(name, "w"):
pass
with open(name + ".shape", "w"):
pass
else:
t.cpu().numpy().tofile(name)
t = t.view(-1, t.shape[-1])
with open(name + ".shape", "wb") as file:
shape_struct = struct.pack("<ii", t.shape[0], t.shape[1])
file.write(shape_struct)
# Switching
def _matmul_switch(config, x):
if config.matmul_method == ExLlamaConfig.MatmulMethod.QUANT_ONLY: return False
if config.matmul_method == ExLlamaConfig.MatmulMethod.PYTORCH_ONLY: return True
xdp = 1
for y in x.shape[:-1]: xdp *= y
return xdp > optimal_switch_thd
def _mlp_switch(config, x):
if config.act_order: return True # Currently only implemented for no-act-order models
if config.mlp_method == ExLlamaConfig.MLPMethod.FUSED: return False
if config.mlp_method == ExLlamaConfig.MLPMethod.NORMAL: return True
xdp = 1
for y in x.shape[:-1]: xdp *= y
return xdp > 1
# 4-bit linear layer implementation
class Ex4bitLinear(nn.Module):
def __init__(self, config, in_features, out_features, has_bias, tensors, key, dequant = False):
super().__init__()
self.config = config
self.key = key
self.dequant = dequant
self.in_features = in_features
self.out_features = out_features
self.bits = 4 # Only support 4 bits for now
self.maxq = 2 ** self.bits - 1
self.bias = None
self.x_map = None
self.seq_g_idx = None
self.qweight = tensors[key + ".qweight"]
self.qzeros = tensors[key + ".qzeros"]
self.scales = tensors[key + ".scales"]
# Infer groupsize from height of qzeros
self.groupsize = None
if self.qzeros.shape[0] > 1:
self.groupsize = (self.qweight.shape[0] * 8) // self.qzeros.shape[0]
if self.config.groupsize is None:
self.config.groupsize = self.groupsize
else:
if self.config.groupsize != self.groupsize:
self.config.no_groupsize = True
# Handle act-order matrix
if key + ".g_idx" in tensors:
if self.groupsize is None: raise ValueError("Found group index but no groupsize. What do?")
self.config.act_order = True
# Rearrange groups sequentially for act-order matrices
g_idx = tensors[key + ".g_idx"]
num_groups = self.qzeros.shape[0]
seq_g_idx, self.x_map = cuda_ext.sequential_q4v2(self.qweight, g_idx, num_groups)
# Discard group index if sequential groups all have the same groupsize. Treat as regular groupsize
# matrix but keep the x_map
i = 0
j = 0
discard = True
while i < seq_g_idx.shape[-1]:
if seq_g_idx[i].item() != j or seq_g_idx[i + 1].item() != self.groupsize:
discard = False
break
i += self.groupsize * 2
j += 1
if not discard:
self.seq_g_idx = seq_g_idx
# Bias
if has_bias: self.bias = tensors[key + ".bias"]
# Optionally dequantize layer at init time
if self.dequant:
self.qweight_dequant = cuda_ext.dequantize_q4v2(self.quant_args())
self.qweight = None
self.scales = None
self.zeros = None
self.seq_g_idx = None
self.x_map = None
def quant_args(self):
return {"qweight": self.qweight,
"scales": self.scales,
"zeros": self.qzeros,
"seq_g_idx": self.seq_g_idx,
"x_map": self.x_map}
cpu_qweight: torch.Tensor
cpu_scales: torch.Tensor
cpu_qzeros: torch.Tensor
cpu_seq_g_idx: torch.Tensor
cpu_x_map: torch.Tensor
def convert_streaming(self, stream_linear):
# Copy tensors to CPU
self.cpu_qweight = self.qweight.to("cpu")
self.cpu_scales = self.scales.to("cpu")
self.cpu_qzeros = self.qzeros.to("cpu")
self.cpu_seq_g_idx = self.seq_g_idx.to("cpu") if self.seq_g_idx is not None else None
self.x_map = self.x_map.to("cpu") if self.x_map is not None else None
self.bias = self.bias.to("cpu") if self.x_map is not None else None
# Replace reference with linear provided by stream buffer
self.qweight = stream_linear.qweight
self.scales = stream_linear.scales
self.qzeros = stream_linear.qzeros
self.seq_g_idx = stream_linear.seq_g_idx
self.x_map = stream_linear.x_map
self.bias = stream_linear.bias
self.streaming = True
streaming: bool = False
is_loaded: bool = False
def load_streaming(self):
# Own references point to the same tensors as all other streamed linears, CPU copies are unique to this linear
self.qweight.copy_(self.cpu_qweight, non_blocking = True)
self.scales.copy_(self.cpu_scales, non_blocking = True)
self.qzeros.copy_(self.cpu_qzeros, non_blocking = True)
if self.seq_g_idx is not None: self.seq_g_idx.copy_(self.cpu_seq_g_idx, non_blocking = True)
if self.x_map is not None: self.x_map.copy_(self.cpu_x_map, non_blocking = True)
if self.bias is not None: self.bias.copy_(self.cpu_x_map, non_blocking = True)
self.is_loaded = True
def forward(self, x):
if self.dequant:
# out = torch.matmul(x, self.qweight_dequant)
out = cuda_ext.matmul_half(x, self.qweight_dequant, _matmul_switch(self.config, x))
# out = cuda_ext.matmul_half(x, self.qweight_dequant, True)
else:
if torch.is_grad_enabled():
# Untested
out = cuda_ext.ExAutogradMatmul4bitCuda.apply(x, self.qweight, self.scales, self.qzeros, self.groupsize, self.bits, self.maxq)
else:
out = cuda_ext.matmul_q4v2(x, self.quant_args(), _matmul_switch(self.config, x))
if self.bias is not None: out += self.bias
# if self.key == "model.layers.0.mlp.gate_proj":
#
# _dump_tensor(x, "cuda_test/model.layers.0.mlp.gate_proj.x")
# sys.exit()
return out
def dump(self, filename):
_dump_tensor(self.qweight, filename + ".qweight")
_dump_tensor(self.scales, filename + ".scales")
_dump_tensor(self.qzeros, filename + ".qzeros")
_dump_tensor(self.seq_g_idx, filename + ".seq_g_idx")
_dump_tensor(self.x_map, filename + ".x_map")
_dump_tensor(self.bias, filename + ".bias")
# Llama MLP
class ExLlamaMLP(nn.Module):
def __init__(self, config, tensors, key, dequant = False):
super().__init__()
self.config = config
self.dequant = dequant
self.gate_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.intermediate_size, False, tensors, key + ".gate_proj", dequant = dequant)
self.up_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.intermediate_size, False, tensors, key + ".up_proj", dequant = dequant)
self.down_proj = Ex4bitLinear(config, self.config.intermediate_size, self.config.hidden_size, False, tensors, key + ".down_proj", dequant = dequant)
self.act_fn = nn.SiLU()
def forward_fused(self, x, rms_norm_weight, buffer):
assert not self.dequant
x = cuda_ext.mlp_q4v2(x,
buffer.x_temp,
buffer.x_col_temp,
buffer.x_act_temp,
rms_norm_weight,
self.config.rms_norm_eps,
self.gate_proj.quant_args(),
self.up_proj.quant_args(),
self.down_proj.quant_args())
return x
def forward(self, x, buffer):
y = self.gate_proj(x)
y = self.act_fn(y)
y *= self.up_proj(x)
y = self.down_proj(y)
return y
# self.gate_proj.dump("cuda_test/mlp/gate_proj")
# self.up_proj.dump("cuda_test/mlp/up_proj")
# self.down_proj.dump("cuda_test/mlp/down_proj")
# _dump_tensor(x, "cuda_test/mlp/test_mlp_x")
# _dump_tensor(y, "cuda_test/mlp/test_mlp_x_gated")
# _dump_tensor(x, "cuda_test/mlp/test_mlp_x_done")
# sys.exit()
# RMS Layer norm.
class ExLlamaRMSNorm(nn.Module):
def __init__(self, config, tensors, key):
super().__init__()
self.config = config
self.variance_epsilon = self.config.rms_norm_eps
self.weight = tensors[key]
def forward(self, hidden_states, buffer):
hidden_states = cuda_ext.llama_rms_norm(hidden_states, self.weight, self.variance_epsilon)
return hidden_states
# Llama attention
class ExLlamaAttention(nn.Module):
def __init__(self, config, tensors, key, sin, cos, index, dequant = False):
super().__init__()
self.config = config
self.sin = sin
self.cos = cos
self.index = index
self.q_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.num_attention_heads * self.config.head_dim, False, tensors, key + ".q_proj", dequant = dequant)
self.k_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.num_attention_heads * self.config.head_dim, False, tensors, key + ".k_proj", dequant = dequant)
self.v_proj = Ex4bitLinear(config, self.config.hidden_size, self.config.num_attention_heads * self.config.head_dim, False, tensors, key + ".v_proj", dequant = dequant)
self.o_proj = Ex4bitLinear(config, self.config.num_attention_heads * self.config.head_dim, self.config.hidden_size, False, tensors, key + ".o_proj", dequant = dequant)
def forward(self, hidden_states, cache, buffer):
bsz, q_len, _ = hidden_states.size()
past_len = cache.current_seq_len
# Project q, k, v
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.config.num_attention_heads, self.config.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.config.num_attention_heads, self.config.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.config.num_attention_heads, self.config.head_dim).transpose(1, 2)
# Apply position embeddings
cos_emb = self.cos.narrow(2, past_len, q_len)
sin_emb = self.sin.narrow(2, past_len, q_len)
def rotate_half(x):
half_size = x.shape[-1] // 2
x1 = x.narrow(-1, 0, half_size)
x2 = x.narrow(-1, half_size, half_size)
return torch.cat((-x2, x1), dim = -1)
query_states_r = rotate_half(query_states)
query_states_r.mul_(sin_emb)
query_states.mul_(cos_emb)
query_states.add_(query_states_r)
key_states_r = rotate_half(key_states)
key_states_r.mul_(sin_emb)
key_states.mul_(cos_emb)
key_states.add_(key_states_r)
# Add keys and values to cache
new_keys = cache.key_states[self.index].narrow(2, past_len, q_len)
new_values = cache.value_states[self.index].narrow(2, past_len, q_len)
new_keys.copy_(key_states)
new_values.copy_(value_states)
# Key/value tensors with past
key_states = cache.key_states[self.index].narrow(2, 0, past_len + q_len)
value_states = cache.value_states[self.index].narrow(2, 0, past_len + q_len)
# Attention
# -- HF Transformers regular attention, O(n^2) memory usage, bunch of mallocs
if self.config.attention_method == ExLlamaConfig.AttentionMethod.PYTORCH_MATMUL:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.config.head_dim)
attn_weights = attn_weights + buffer.attn_mask
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
attn_weights = nn.functional.softmax(attn_weights, dim = -1, dtype = torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2)
del attn_weights
# -- Scaled dot-product attention from PyTorch 2, should be comparable to xformers (?)
elif self.config.attention_method == ExLlamaConfig.AttentionMethod.PYTORCH_SCALED_DP:
# Torch's SDP attention has a built-in causal mask feature which we can use only when there is no past, i.e.
# it can only apply a square attention mask. It saves quite a bit of VRAM but in practice Torch seems to use
# the same amount of memory at peak anyway. It's also a little slower, and it gives misleading benchmarks
# since it doesn't actually apply in the case we're interested in (autoregression.) Disabled for now.
if True or past_len > 0:
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = buffer.attn_mask, is_causal = False)
else:
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = None, is_causal = True)
attn_output = attn_output.transpose(1, 2)
else: raise ValueError("Wut?")
# Output projection
attn_output = attn_output.reshape(bsz, q_len, self.config.hidden_size)
attn_output = self.o_proj(attn_output)
return attn_output
class ExLlamaDecoderLayer(nn.Module):
def __init__(self, config, tensors, key, index, sin, cos, dequant = False):
super().__init__()
self.config = config
self.index = index
self.self_attn = ExLlamaAttention(self.config, tensors, key + ".self_attn", sin, cos, self.index, dequant = dequant)
self.mlp = ExLlamaMLP(self.config, tensors, key + ".mlp", dequant = dequant)
self.input_layernorm = ExLlamaRMSNorm(self.config, tensors, key + ".input_layernorm.weight")
self.post_attention_layernorm = ExLlamaRMSNorm(self.config, tensors, key + ".post_attention_layernorm.weight")
def forward(self, hidden_states, cache, buffer):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states, buffer)
hidden_states = self.self_attn(hidden_states, cache, buffer)
hidden_states = residual + hidden_states
# TODO: Support dequantized layer in fused MLP. Also, finish implementing fused MLP
if self.mlp.dequant or _mlp_switch(self.config, hidden_states):
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states, buffer)
hidden_states = self.mlp(hidden_states, buffer)
hidden_states = residual + hidden_states
else:
hidden_states = self.mlp.forward_fused(hidden_states, self.post_attention_layernorm.weight, buffer)
return hidden_states
# _dump_tensor(hidden_states, "cuda_test/mlp/test_mlp_x_prenorm")
# _dump_tensor(self.post_attention_layernorm.weight, "cuda_test/mlp/test_mlp_norm_weight")
# _dump_tensor(hidden_states, "cuda_test/mlp/test_mlp_x_postresidual")
# Persistent cache for inference. Allocate the whole thing up front.
class ExLlamaCache:
def __init__(self, model, batch_size = 1, max_seq_len = -1, copy_from = None):
self.model = model
self.config = self.model.config
self.max_seq_len = max_seq_len if max_seq_len != -1 else self.config.max_seq_len
self.batch_size = batch_size
self.key_states = []
self.value_states = []
self.current_seq_len = 0
# Preallocate full-length cache
for i in range(self.config.num_hidden_layers):
if copy_from is None:
p_key_states = torch.zeros(self.batch_size, self.config.num_attention_heads, self.max_seq_len, self.config.head_dim, dtype = torch.float16, device = self.model.config.device_map.layers[i])
p_value_states = torch.zeros(self.batch_size, self.config.num_attention_heads, self.max_seq_len, self.config.head_dim, dtype = torch.float16, device = self.model.config.device_map.layers[i])
else:
p_key_states = copy_from.key_states[i].clone()
p_value_states = copy_from.value_states[i].clone()
self.key_states.append(p_key_states)
self.value_states.append(p_value_states)
def clone(self):
new = ExLlamaCache(self.model, batch_size = self.batch_size, max_seq_len = self.max_seq_len, copy_from = self)
return new
def roll_left(self):
for i in range(self.config.num_hidden_layers):
self.key_states[i] = torch.roll(self.key_states[i], shifts = -1, dims = 2)
self.value_states[i] = torch.roll(self.value_states[i], shifts = -1, dims = 2)
self.current_seq_len -= 1
def copy_states(self, target, from_column, from_columns, to_column, to_columns, from_row, from_rows, to_row, to_rows):
assert from_rows == 1
assert from_columns == to_columns
assert to_column + to_columns <= target.max_seq_len
assert from_column + from_columns <= self.max_seq_len
for i in range(self.config.num_hidden_layers):
source_view_k = self.key_states[i].narrow(0, from_row, from_rows).narrow(2, from_column, from_columns)
source_view_v = self.value_states[i].narrow(0, from_row, from_rows).narrow(2, from_column, from_columns)
target_view_k = target.key_states[i].narrow(0, to_row, to_rows).narrow(2, to_column, to_columns)
target_view_v = target.value_states[i].narrow(0, to_row, to_rows).narrow(2, to_column, to_columns)
if to_rows > 1:
source_view_k = source_view_k.expand_as(target_view_k)
source_view_v = source_view_v.expand_as(target_view_v)
target_view_k.copy_(source_view_k)
target_view_v.copy_(source_view_v)
def debug(self):
print(self.current_seq_len, self.key_states[0][0, 0, :self.current_seq_len, :])
# Layer streaming
# TODO: Currently assumes single GPU
class ExLlamaStreamer:
mlp_gate_proj: Ex4bitLinear
mlp_up_proj: Ex4bitLinear
mlp_down_proj: Ex4bitLinear
self_attn_q_proj: Ex4bitLinear
self_attn_k_proj: Ex4bitLinear
self_attn_v_proj: Ex4bitLinear
self_attn_o_proj: Ex4bitLinear
# Copy the first layer to be streamed
def __init__(self, config, layer):
self.config = config
# Reference all relevant tensors in the first layer. All linears in subsequent layers will reference these
# and dereference their own while maintaining CPU copies
self.mlp_gate_proj = layer.mlp.gate_proj
self.mlp_up_proj = layer.mlp.up_proj
self.mlp_down_proj = layer.mlp.down_proj
self.self_attn_q_proj = layer.self_attn.q_proj
self.self_attn_k_proj = layer.self_attn.k_proj
self.self_attn_v_proj = layer.self_attn.v_proj
self.self_attn_o_proj = layer.self_attn.o_proj
# Separate CUDA stream for background transfer
# TODO: Just using first stream layer device, we really need a stream buffer per device
self.cuda_stream = torch.cuda.Stream(self.mlp_gate_proj.qweight.device)
# Set up layer for streaming
def convert_linear(self, self_linear, linear):
assert self_linear.qweight.shape == linear.qweight.shape
assert self_linear.scales.shape == linear.scales.shape
assert self_linear.qzeros.shape == linear.qzeros.shape
assert self_linear.seq_g_idx is None or self_linear.seq_g_idx.shape == linear.seq_g_idx.shape
assert self_linear.x_map is None or self_linear.x_map.shape == linear.x_map.shape
assert self_linear.bias is None or self_linear.bias.shape == linear.bias.shape
linear.convert_streaming(self_linear)
def convert_layer(self, layer):
self.convert_linear(self.mlp_gate_proj, layer.mlp.gate_proj)
self.convert_linear(self.mlp_up_proj, layer.mlp.up_proj)
self.convert_linear(self.mlp_down_proj, layer.mlp.down_proj)
self.convert_linear(self.self_attn_q_proj, layer.self_attn.q_proj)
self.convert_linear(self.self_attn_k_proj, layer.self_attn.k_proj)
self.convert_linear(self.self_attn_v_proj, layer.self_attn.v_proj)
self.convert_linear(self.self_attn_o_proj, layer.self_attn.o_proj)
# Load layer
def load_layer(self, layer):
with torch.cuda.stream(self.cuda_stream):
layer.mlp.gate_proj.load_streaming()
layer.mlp.up_proj.load_streaming()
layer.mlp.down_proj.load_streaming()
layer.self_attn.q_proj.load_streaming()
layer.self_attn.k_proj.load_streaming()
layer.self_attn.v_proj.load_streaming()
layer.self_attn.o_proj.load_streaming()
def load_layer_sync(self):
self.cuda_stream.synchronize()
# Device map for the model.
class ExLlamaDeviceMap:
def __init__(self, num_layers):
self.num_layers = num_layers
self.embed_tokens = "cpu" # Embedding table on CPU saves 400 MB on the 30B model with no measurable impact on performance
self.lm_head = "cuda:0"
self.norm = "cuda:0"
self.layers = ["cuda:0"] * self.num_layers
self.stream_layer_interval = 0
def get_layers_devs(self):
return list(set(self.layers))
def map(self, key, loading = False):
if key.startswith("lm_head."): return self.lm_head
if key.startswith("model.embed_tokens."): return self.embed_tokens
if key.startswith("model.norm."): return self.norm
if key.startswith("model.layers."):
num = int(key.split(".")[2])
if loading and self.stream_layer_interval > 0 and (num + 1) % self.stream_layer_interval == 0:
if key.startswith(f"model.layers.{num}.mlp."): return "cpu"
if key.startswith(f"model.layers.{num}.self_attn."): return "cpu"
return self.layers[num]
raise ValueError("Unknown key: " + key)
class ExLlamaBuffer:
config: ExLlamaConfig
def __init__(self, config):
self.config = config
# Attention mask
attn_mask: torch.Tensor = None
# Fused MLP
x_temp: torch.Tensor = None
x_col_temp: torch.Tensor = None
x_act_temp: torch.Tensor = None
def prepare_fused_mlp(self, hidden_state, first_device):
self.x_temp = torch.empty(hidden_state.shape, device = first_device, dtype = torch.float16)
# self.x_temp = torch.empty((1, self.config.max_seq_len, self.config.hidden_size), device = first_device, dtype = torch.float16)
self.x_col_temp = torch.empty((self.x_temp.shape[0],), device = first_device, dtype = torch.float32)
self.x_act_temp = torch.empty(self.x_temp.shape[:-1] + (self.config.intermediate_size,), device = first_device, dtype = torch.float16)
# Move to device
def to(self, device):
new = ExLlamaBuffer(self.config)
new.x_temp = None if self.x_temp is None else self.x_temp.to(device)
new.x_col_temp = None if self.x_col_temp is None else self.x_temp.to(device)
new.x_act_temp = None if self.x_act_temp is None else self.x_temp.to(device)
return new
def _device_to_int(device):
return int(device[device.find(":") + 1:])
def _skip_key(key):
if key.endswith("_proj.bias"): return True
if key.endswith(".rotary_emb.inv_freq"): return True
return False
class ExLlama(nn.Module):
def __init__(self, config):
super().__init__()
self.eval()
self.config = config
self.stream_buffer = None
# Forward streaming config to device map so we only load the first layer on GPU
self.config.device_map.stream_layer_interval = self.config.stream_layer_interval
# Load model weights
tensors = {}
with safe_open(self.config.model_path, framework="pt", device="cpu") as f:
# Begin auto mapping if enabled
decoder_size = 0
decoder_dq_size = 0
norm_size = 0
head_size = 0
half_element_size = torch.tensor([], dtype = torch.float16).element_size()
if self.config.auto_map is not None:
self.config.device_map.embed_tokens = "cpu"
self.config.device_map.layers = ["cuda:0"] + ["?"] * (self.config.num_hidden_layers - 1)
for key in f.keys():
if _skip_key(key): continue
if key.startswith("model.layers.0."):
tensor = f.get_tensor(key)
decoder_size += tensor.numel() * tensor.element_size()
if key.endswith(".weight"):
decoder_dq_size += tensor.numel() * tensor.element_size()
if key.endswith(".qweight"):
decoder_dq_size += tensor.numel() * 8 * half_element_size
if key.startswith("model.norm."):
tensor = f.get_tensor(key)
norm_size += tensor.numel() * tensor.element_size()
if key.startswith("lm_head."):
tensor = f.get_tensor(key)
head_size += tensor.numel() * tensor.element_size()
# Assign layers automatically
device_usage = 0
device_index = 0
layer_index_device = 0
max_usage = self.config.auto_map[device_index] * (1024 ** 3)
for layer in range(self.config.num_hidden_layers + 2):
this_layer_size = decoder_size
if layer == self.config.num_hidden_layers + 0: this_layer_size = norm_size
elif layer == self.config.num_hidden_layers + 1: this_layer_size = head_size
elif self.config.dequant is not None and layer_index_device < self.config.dequant[device_index]: this_layer_size = decoder_dq_size
while device_usage + this_layer_size > max_usage:
device_index += 1
device_usage = 0
layer_index_device = 0
max_usage = self.config.auto_map[device_index] * (1024 ** 3)
if device_index >= len(self.config.auto_map): raise ValueError("Model too large for device allocation scheme.")
target = f"cuda:{device_index}"
if layer == self.config.num_hidden_layers + 0: self.config.device_map.norm = target
elif layer == self.config.num_hidden_layers + 1: self.config.device_map.lm_head = target
else: self.config.device_map.layers[layer] = f"cuda:{device_index}"
device_usage += this_layer_size
layer_index_device += 1
# Load tensors, move to device(s)
for key in f.keys():
if _skip_key(key): continue
device = self.config.device_map.map(key, loading = True)
tensor = f.get_tensor(key)
if key.endswith(".scales"): tensor = tensor.half()
if key == "lm_head.weight" and device == "cpu": tensor = tensor.float()
if key == "model.norm.weight": tensor = tensor.half()
if key.endswith(".embed_tokens.weight"): tensor = tensor.half()
if key.endswith(".input_layernorm.weight"): tensor = tensor.half()
if key.endswith(".post_attention_layernorm.weight"): tensor = tensor.half()
tensor = tensor.to(device, non_blocking = True)
tensors[key] = tensor
# print(key + " -> " + device)
# Head
self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias = False, device = "meta")
self.lm_head.weight = nn.Parameter(tensors["lm_head.weight"])
# self.lm_head_data = tensors["lm_head.weight"].transpose(0, 1).contiguous()
# Token embeddings
self.embed_tokens = nn.Embedding(self.config.vocab_size, self.config.hidden_size, self.config.pad_token_id, device = "meta")
self.embed_tokens.weight = nn.Parameter(tensors["model.embed_tokens.weight"])
# Norm
self.norm = ExLlamaRMSNorm(self.config, tensors, "model.norm.weight")
# Prepare position embeddings for max seq length
devs = self.config.device_map.get_layers_devs()
self.sincos = {}
for device in devs:
inv_freq = 1.0 / (self.config.rotary_embedding_base ** (torch.arange(0, self.config.head_dim, 2, device = device).float() / self.config.head_dim))
t = torch.arange(self.config.max_seq_len, device = device, dtype = torch.float32)
freqs = torch.einsum("i,j->ij", t, inv_freq)
emb = torch.cat((freqs, freqs), dim = -1)
sin = emb.sin()[None, None, :, :].half()
cos = emb.cos()[None, None, :, :].half()
self.sincos[device] = (sin, cos)
# Layers
layer_streaming = self.config.stream_layer_interval > 0
modules = []
device_layer_index = [0] * len(devs)
for i in range(self.config.num_hidden_layers):
device = self.config.device_map.layers[i]
sin, cos = self.sincos[device]
dequant = False
if self.config.dequant is not None:
device_idx = _device_to_int(device)
device_layer = device_layer_index[device_idx]
device_layer_index[device_idx] += 1
if device_layer < self.config.dequant[device_idx]: dequant = True
layer = ExLlamaDecoderLayer(self.config, tensors, f"model.layers.{i}", i, sin, cos, dequant = dequant)
if layer_streaming and i > 0 and (i + 1) % self.config.stream_layer_interval == 0:
if self.stream_buffer is None: self.stream_buffer = ExLlamaStreamer(self.config, layer) # Use first layer as prototype
self.stream_buffer.convert_layer(layer)
modules.append(layer)
self.layers = nn.ModuleList(modules)
def forward(self, input_ids, cache, last_id_only = True, preprocess_only = False):
batch_size, seq_len = input_ids.shape
past_len = cache.current_seq_len
buffer = ExLlamaBuffer(self.config)
# Build attention mask on first device, copy to others if necessary
devs = self.config.device_map.get_layers_devs()
attn_mask = torch.zeros(batch_size, 1, seq_len, seq_len + past_len, dtype = torch.float16, device = devs[0])
if seq_len > 1:
attn_mask = torch.zeros(batch_size, 1, seq_len, past_len + seq_len, dtype = torch.float16, device = devs[0])
attn_mask_triu = torch.triu(torch.full((seq_len - 1, seq_len - 1), torch.finfo(torch.float16).min))
attn_mask[:, :, : seq_len - 1, past_len + 1: past_len + seq_len] = attn_mask_triu
buffer.attn_mask = attn_mask
# Embeddings
# TODO: Allow passing input embeddings instead of IDs
hidden_states = self.embed_tokens(input_ids.to(self.config.device_map.embed_tokens))
# Prepare fused MLP buffers if not switching
if not _mlp_switch(self.config, hidden_states):
buffer.prepare_fused_mlp(hidden_states, devs[0])
# Split buffers to devices
buffers = {devs[0]: buffer}
for device in devs[1:]: buffers[device] = buffer.to(device)
# Decoder layers
next_streaming_layer = -1
background_thread = None
layer_streaming = self.config.stream_layer_interval > 0
if layer_streaming:
next_streaming_layer = self.config.stream_layer_interval - 1
# background_thread = threading.Thread(target = self.stream_buffer.load_layer, args = (self.layers[next_streaming_layer],))
# background_thread.start()