-
Notifications
You must be signed in to change notification settings - Fork 0
/
fim_transform_finetune.py
521 lines (466 loc) · 19.3 KB
/
fim_transform_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# coding=utf-8
# Copyright 2024 Sourab Mangrulkar. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Continued pre-training/fine-tuning of code LLMs for code autocompletion.
"""
import gc
import os
import random
import sys
from typing import Optional
from dataclasses import dataclass, field
import numpy as np
import torch
from datasets import load_dataset
from torch.utils.data import IterableDataset
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
Trainer,
TrainingArguments,
HfArgumentParser,
set_seed,
BitsAndBytesConfig,
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, replace_lora_weights_loftq
import fim
# Define and parse arguments.
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={
"help": "Path to pretrained model or model identifier from huggingface.co/models"
}
)
lora_alpha: Optional[int] = field(default=16)
lora_dropout: Optional[float] = field(default=0.1)
lora_r: Optional[int] = field(default=64)
lora_target_modules: Optional[str] = field(
default="q_proj,k_proj,v_proj,o_proj,down_proj,up_proj,gate_proj",
metadata={
"help": "comma separated list of target modules to apply LoRA layers to"
},
)
use_nested_quant: Optional[bool] = field(
default=False,
metadata={"help": "Activate nested quantization for 4bit base models"},
)
bnb_4bit_compute_dtype: Optional[str] = field(
default="float16",
metadata={"help": "Compute dtype for 4bit base models"},
)
bnb_4bit_quant_type: Optional[str] = field(
default="nf4",
metadata={"help": "Quantization type fp4 or nf4"},
)
use_flash_attn: Optional[bool] = field(
default=False,
metadata={"help": "Enables Flash attention for training."},
)
use_peft_lora: Optional[bool] = field(
default=False,
metadata={"help": "Enables PEFT LoRA for training."},
)
use_8bit_qunatization: Optional[bool] = field(
default=False,
metadata={"help": "Enables loading model in 8bit."},
)
use_4bit_quantization: Optional[bool] = field(
default=False,
metadata={"help": "Enables loading model in 4bit."},
)
use_reentrant: Optional[bool] = field(
default=False,
metadata={"help": "Gradient Checkpointing param. Refer the related docs"},
)
use_unsloth: Optional[bool] = field(
default=False,
metadata={"help": "Enables UnSloth for training."},
)
use_loftq: Optional[bool] = field(
default=False,
metadata={"help": "Enables LoftQ init for the LoRA adapters when using QLoRA."},
)
use_loftq_callback: Optional[bool] = field(
default=False,
metadata={"help": "Enables LoftQ callback comparing logits of base model to the ones from LoftQ init. Provides "
"better init."},
)
@dataclass
class DataTrainingArguments:
dataset_name: Optional[str] = field(
default="smangrul/hug_stack",
metadata={"help": "The preference dataset to use."},
)
dataset_text_field: str = field(
default="text", metadata={"help": "Dataset field to use as input text."}
)
max_seq_length: Optional[int] = field(default=4096)
test_size: Optional[float] = field(default=0.1)
fim_rate: Optional[float] = field(default=0.5)
fim_spm_rate: Optional[float] = field(default=0.5)
splits: Optional[str] = field(
default="train",
metadata={"help": "Comma separate list of the splits to use from the dataset."},
)
def chars_token_ratio(dataset, tokenizer, data_column, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
total_characters += len(example[data_column])
total_tokens += len(tokenizer(example[data_column]).tokens())
return total_characters / total_tokens
class ConstantLengthDataset(IterableDataset):
"""
Iterable dataset that returns constant length chunks of tokens from stream of text files.
Args:
tokenizer (Tokenizer): The processor used for processing the data.
dataset (dataset.Dataset): Dataset with text files.
infinite (bool): If True the iterator is reset after dataset reaches end else stops.
seq_length (int): Length of token sequences to return.
num_of_sequences (int): Number of token sequences to keep in buffer.
chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer.
fim_rate (float): Rate (0.0 to 1.0) that sample will be permuted with FIM.
fim_spm_rate (float): Rate (0.0 to 1.0) of FIM permutations that will use SPM.
seed (int): Seed for random number generator.
"""
def __init__(
self,
tokenizer,
dataset,
infinite=False,
seq_length=1024,
num_of_sequences=1024,
chars_per_token=3.6,
content_field="content",
fim_rate=0.5,
fim_spm_rate=0.5,
seed=0,
shuffle=False,
):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.eos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.infinite = infinite
self.current_size = 0
self.max_buffer_size = seq_length * chars_per_token * num_of_sequences
self.content_field = content_field
self.fim_rate = fim_rate
self.fim_spm_rate = fim_spm_rate
self.seed = seed
self.shuffle = shuffle
(
self.bos_token_id,
self.suffix_tok_id,
self.prefix_tok_id,
self.middle_tok_id,
self.pad_tok_id,
) = fim.get_fim_token_ids(self.tokenizer)
if not self.suffix_tok_id and self.fim_rate > 0:
print("FIM is not supported by tokenizer, disabling FIM")
self.fim_rate = 0
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
np_rng = np.random.RandomState(seed=self.seed)
while more_examples:
buffer_prefix, buffer_len_prefix = [], 0
buffer_middle, buffer_len_middle = [], 0
buffer_suffix, buffer_len_suffix = [], 0
while True:
if buffer_len_prefix + buffer_len_middle + buffer_len_suffix >= self.max_buffer_size:
break
try:
next_entry = next(iterator)
buffer_prefix.append(next_entry["prefix"])
buffer_middle.append(next_entry["middle"])
buffer_suffix.append(next_entry["suffix"])
buffer_len_prefix += len(buffer_prefix[-1])
buffer_len_middle += len(buffer_middle[-1])
buffer_len_suffix += len(buffer_suffix[-1])
except StopIteration:
if self.infinite:
iterator = iter(self.dataset)
else:
more_examples = False
break
tokenized_inputs_prefix = self.tokenizer(buffer_prefix, truncation=False,
add_special_tokens=False)["input_ids"]
tokenized_inputs_middle = self.tokenizer(buffer_middle, truncation=False,
add_special_tokens=False)["input_ids"]
tokenized_inputs_suffix = self.tokenizer(buffer_suffix, truncation=False,
add_special_tokens=False)["input_ids"]
all_token_ids = []
for tokenized_input_prefix, tokenized_input_middle, tokenized_input_suffix in (
zip(tokenized_inputs_prefix, tokenized_inputs_middle, tokenized_inputs_suffix)
):
tokenized_input = tokenized_input_prefix + tokenized_input_middle + tokenized_input_suffix
# optionally do FIM permutations
if self.fim_rate > 0:
tokenized_input, np_rng = fim.permute(
tokenized_input,
tokenized_input_prefix,
tokenized_input_middle,
tokenized_input_suffix,
np_rng,
self.suffix_tok_id,
self.prefix_tok_id,
self.middle_tok_id,
self.pad_tok_id,
fim_rate=self.fim_rate,
fim_spm_rate=self.fim_spm_rate,
truncate_or_pad=False,
bos_token_id=self.bos_token_id,
)
all_token_ids.extend(tokenized_input + [self.concat_token_id])
examples = []
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i: i + self.seq_length]
if len(input_ids) == self.seq_length:
examples.append(input_ids)
if self.shuffle:
random.shuffle(examples)
for example in examples:
self.current_size += 1
yield {
"input_ids": torch.LongTensor(example),
"labels": torch.LongTensor(example),
}
def divide_affixes(sample):
prefix, suffix = sample["input"].split("<FILL_ME>")
prefix = prefix.lstrip('\n').rstrip() + '\n'
middle = sample["output"].lstrip('\n').rstrip() + '\n'
suffix = suffix.lstrip('\n').rstrip() + '\n'
return {"prefix": prefix, "middle": middle, "suffix": suffix}
def create_datasets(tokenizer, args, seed):
dataset = load_dataset("ASSERT-KTH/repairllama-datasets", "ir4xor2",
data_files={"train": "data/ir4xor2/train.jsonl", "eval": "data/ir4xor2/test.jsonl"})
dataset = dataset.map(divide_affixes).select_columns(["prefix", "middle", "suffix"])
train_data = dataset["train"]
valid_data = dataset["eval"]
print(
f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}"
)
chars_per_token = chars_token_ratio(train_data, tokenizer, args.dataset_text_field)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
infinite=True,
seq_length=args.max_seq_length,
chars_per_token=chars_per_token,
content_field=args.dataset_text_field,
fim_rate=args.fim_rate,
fim_spm_rate=args.fim_spm_rate,
seed=seed,
shuffle=True,
)
valid_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
infinite=False,
seq_length=args.max_seq_length,
chars_per_token=chars_per_token,
content_field=args.dataset_text_field,
fim_rate=args.fim_rate,
fim_spm_rate=args.fim_spm_rate,
seed=seed,
)
print(f"A sample of valid dataset: {next(iter(valid_dataset))}")
return train_dataset, valid_dataset
def get_mae(x, y):
return (x - y).abs().mean()
def get_mse(x, y):
return torch.pow(x - y, 2).mean()
def error_report(x, y):
mae = get_mae(x, y)
mse = get_mse(x, y)
print(
f"Mean absolute error: {mae:>8.5f}\n"
f"Mean squared error: {mse:>8.5f}"
)
def loftq_init(model, tokenizer, train_dataset, max_seq_length, args):
if args.use_loftq_callback:
compute_dtype = getattr(torch, args.bnb_4bit_compute_dtype)
base_model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, torch_dtype=compute_dtype)
base_model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=8)
random_input_ids = torch.randint(0, len(train_dataset), size=(1,)).numpy().tolist()
random_inputs = [train_dataset[i]['content'] for i in random_input_ids]
random_inputs = tokenizer(random_inputs, return_tensors="pt", padding=True, truncation="max_length", max_length=max_seq_length)
logits_base = base_model(**random_inputs).logits
del base_model
gc.collect()
def loftq_callback(model, module_name):
"""Callable to replace weights with LoFTQ if the mse is lower than the current best one."""
global current_mse
logits = model(**random_inputs).logits
mse = get_mse(logits_base, logits)
if mse < current_mse:
current_mse = mse
print(f"MSE improved for module {module_name}")
return True
print(f"MSE did not improve for module {module_name}")
return False
replace_lora_weights_loftq(model, callback=loftq_callback)
logits_loftq_callback = model(**random_inputs).logits
error_report(logits_base, logits_loftq_callback)
else:
replace_lora_weights_loftq(model)
def create_and_prepare_model(args, data_args, training_args):
device_map = None
bnb_config = None
load_in_8bit = args.use_8bit_qunatization
load_in_4bit = args.use_4bit_quantization
if args.use_unsloth:
from unsloth import FastLanguageModel
if args.use_4bit_quantization:
compute_dtype = getattr(torch, args.bnb_4bit_compute_dtype)
bnb_config = BitsAndBytesConfig(
load_in_4bit=args.use_4bit_quantization,
bnb_4bit_quant_type=args.bnb_4bit_quant_type,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=args.use_nested_quant,
)
if compute_dtype == torch.float16 and args.use_4bit_quantization:
major, _ = torch.cuda.get_device_capability()
if major >= 8:
print("=" * 80)
print(
"Your GPU supports bfloat16, you can accelerate training with the argument --bf16"
)
print("=" * 80)
if args.use_4bit_quantization or args.use_8bit_qunatization:
device_map = (
int(os.environ.get("LOCAL_RANK", -1))
if torch.distributed.is_available() and torch.distributed.is_initialized()
else "auto"
) # {"": 0}
if args.use_unsloth:
# Load model
model, _ = FastLanguageModel.from_pretrained(
model_name=args.model_name_or_path,
max_seq_length=data_args.max_seq_length,
dtype=None,
load_in_4bit=load_in_4bit,
)
else:
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path,
load_in_8bit=load_in_8bit,
quantization_config=bnb_config,
device_map=device_map,
trust_remote_code=True,
attn_implementation="flash_attention_2" if args.use_flash_attn else "eager",
)
if (
(args.use_4bit_quantization or args.use_8bit_qunatization)
and args.use_peft_lora
and not args.use_unsloth
):
model = prepare_model_for_kbit_training(
model,
use_gradient_checkpointing=training_args.gradient_checkpointing,
gradient_checkpointing_kwargs={"use_reentrant": model_args.use_reentrant},
)
if args.use_peft_lora and not args.use_unsloth:
peft_config = LoraConfig(
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
r=args.lora_r,
bias="none",
task_type="CAUSAL_LM",
target_modules=args.lora_target_modules.split(",")
if args.lora_target_modules != "all-linear"
else args.lora_target_modules,
)
model = get_peft_model(model, peft_config)
elif args.use_peft_lora and args.use_unsloth:
# Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(
model,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
r=args.lora_r,
target_modules=args.lora_target_modules.split(",")
if args.lora_target_modules != "all-linear"
else args.lora_target_modules,
use_gradient_checkpointing=training_args.gradient_checkpointing,
random_state=training_args.seed,
max_seq_length=data_args.max_seq_length,
)
return model
def main(model_args, data_args, training_args):
# Set seed for reproducibility
set_seed(training_args.seed)
# load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path)
# load the datasets
train_dataset, eval_dataset = create_datasets(
tokenizer, data_args, training_args.seed
)
train_dataset.start_iteration = 0
model = create_and_prepare_model(model_args, data_args, training_args)
# gradient ckpt
model.config.use_cache = not training_args.gradient_checkpointing
training_args.gradient_checkpointing = (
training_args.gradient_checkpointing and not model_args.use_unsloth
)
if training_args.gradient_checkpointing:
training_args.gradient_checkpointing_kwargs = {
"use_reentrant": model_args.use_reentrant
}
# trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.accelerator.print(f"{trainer.model}")
if model_args.use_peft_lora:
trainer.model.print_trainable_parameters()
# LoftQ initialization when using QLoRA
if model_args.use_4bit_quantization and model_args.use_loftq:
loftq_init(trainer.model, tokenizer, train_dataset, data_args.max_seq_length, model_args)
# train
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
trainer.train(resume_from_checkpoint=checkpoint)
# saving final model
if trainer.is_fsdp_enabled:
trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT")
trainer.save_model()
trainer.push_to_hub()
if __name__ == "__main__":
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, TrainingArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script, and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
main(model_args, data_args, training_args)