Skip to content

Latest commit

 

History

History
 
 

kafka

End to end inference example with Minio and Kafka

Setup

  1. Your ~/.kube/config should point to a cluster with KFServing installed.
  2. Your cluster's Istio Ingress gateway must be network accessible.
  3. Install Minio with following Minio deploy step.
  4. Use existing Kafka cluster or install Kafka on your cluster with Confluent helm chart.
  5. Install Kafka Event Source.
  6. Kubernetes 1.15+
  7. KFServing 0.3+

This example shows an end to end inference pipeline which processes an kafka event and invoke the inference service to get the prediction with provided pre/post processing code.

diagram

Deploy Kafka

If you do not have an existing kafka cluster, you can run the following commands to install in-cluster kafka using helm3 with persistence turned off.

helm repo add confluentinc https://confluentinc.github.io/cp-helm-charts/
helm repo update
helm install my-kafka -f values.yaml --set cp-schema-registry.enabled=false,cp-kafka-rest.enabled=false,cp-kafka-connect.enabled=false confluentinc/cp-helm-charts

after successful install you are expected to see the running kafka cluster

NAME                      READY   STATUS    RESTARTS   AGE
my-kafka-cp-kafka-0       2/2     Running   0          126m
my-kafka-cp-kafka-1       2/2     Running   1          126m
my-kafka-cp-kafka-2       2/2     Running   0          126m
my-kafka-cp-zookeeper-0   2/2     Running   0          127m

Deploy Kafka Event Source

Install Knative Eventing and Kafka Event Source.

VERSION=v0.14.0
kubectl apply --selector knative.dev/crd-install=true \
  --filename https://github.com/knative/eventing/releases/download/$VERSION/eventing-crds.yaml
kubectl apply --filename https://github.com/knative/eventing/releases/download/$VERSION/eventing.yaml
kubectl apply --filename https://github.com/knative/eventing-contrib/releases/download/$VERSION/kafka-source.yaml

Apply the InferenceService addressable cluster role

kubectl apply -f addressable-resolver.yaml

Deploy Minio

  • If you do not have Minio setup in your cluster, you can run following command to install Minio test instance.
kubectl apply -f minio.yaml
  • Install Minio client mc
kubectl port-forward $(kubectl get pod --selector="app=minio" --output jsonpath='{.items[0].metadata.name}') 9000:9000
mc config host add myminio http://127.0.0.1:9000 minio minio123
  • Create buckets mnist for uploading images and digit-[0-9] for classification.
mc mb myminio/mnist
  • Setup event notification to publish events to kafka.
mc event add myminio/mnist arn:minio:sqs:us-east-1:1:kafka --suffix .png

you should expect a notification event like following sent to kafka topic mnist after uploading an image in mnist bucket

{
   "EventType":"s3:ObjectCreated:Put",
   "Key":"mnist/0.png",
   "Records":[
      {"eventVersion":"2.0",
       "eventSource":"minio:s3",
       "awsRegion":"",
       "eventTime":"2019-11-17T19:08:08Z",
       "eventName":"s3:ObjectCreated:Put",
       "userIdentity":{"principalId":"minio"},
       "requestParameters":{"sourceIPAddress":"127.0.0.1:37830"},
       "responseElements":{"x-amz-request-id":"15D808BF706E0994",
       "x-minio-origin-endpoint":"http://10.244.0.71:9000"},
       "s3":{
          "s3SchemaVersion":"1.0",
          "configurationId":"Config",
          "bucket":{
               "name":"mnist",
               "ownerIdentity":{"principalId":"minio"},
               "arn":"arn:aws:s3:::mnist"},
          "object":{"key":"0.png","size":324,"eTag":"ebed21f6f77b0a64673a3c96b0c623ba","contentType":"image/png","userMetadata":{"content-type":"image/png"},"versionId":"1","sequencer":"15D808BF706E0994"}},
          "source":{"host":"","port":"","userAgent":""}}
   ],
   "level":"info",
   "msg":"",
   "time":"2019-11-17T19:08:08Z"
}

Train TF mnist model and save on Minio

If you already have a mnist model saved on Minio or S3 you can skip this step, otherwise you can install Kubeflow and follow TF mnist AWS example to train a TF mnist model and save it on Minio. You may need to add following additional S3 environment variables to enable saving model on Minio.

env:
- name: S3_USE_HTTPS
  value: "0"
- name: S3_ENDPOINT
  value: "minio-service.kubeflow:9000"
- name: AWS_ENDPOINT_URL
  value: "http://minio-service.kubeflow:9000"

Create S3 Secret for Minio and attach to Service Account

KFServing gets the secrets from your service account, you need to add the created or existing secret to your service account's secret list. By default KFServing uses default service account, user can use own service account and overwrite on InferenceService CRD.

Apply the secret and attach the secret to the service account.

kubectl apply -f s3_secret.yaml

Build mnist transformer image

The transformation image implements the preprocess handler to process the minio notification event to download the image from minio and transform image bytes to tensors. The postprocess handler processes the prediction and upload the image to the classified minio bucket digit-[0-9].

docker build -t $USER/mnist-transformer:latest -f ./transformer.Dockerfile . --rm
docker push $USER/mnist-transformer:latest

Create the InferenceService

Specify the built image on Transformer spec and apply the inference service CRD.

kubectl apply -f mnist_kafka.yaml 

This creates transformer and predictor pods, the request goes to transformer first where it invokes the preprocess handler, transformer then calls out to predictor to get the prediction response which in turn invokes the postprocess handler.

kubectl get pods -l serving.kubeflow.org/inferenceservice=mnist
mnist-predictor-default-9t5ms-deployment-74f5cd7767-khthf     2/2     Running       0          10s
mnist-transformer-default-jmf98-deployment-8585cbc748-ftfhd   2/2     Running       0          14m

Create kafka event source

Apply kafka event source which creates the kafka consumer pod to pull the events from kafka and deliver to inference service.

kubectl apply -f kafka-source.yaml

This creates the kafka source pod which consumers the events from mnist topic

kafkasource-kafka-source-3d809fe2-1267-11ea-99d0-42010af00zbn5h   1/1     Running   0          8h

Upload a digit image to Minio mnist bucket

The last step is to upload the image images/0.png, image then should be moved to the classified bucket based on the prediction response!