diff --git a/src/python/turicreate/toolkits/drawing_classifier/_tf_drawing_classifier.py b/src/python/turicreate/toolkits/drawing_classifier/_tf_drawing_classifier.py index 8f9efbca52..f0f9784d74 100644 --- a/src/python/turicreate/toolkits/drawing_classifier/_tf_drawing_classifier.py +++ b/src/python/turicreate/toolkits/drawing_classifier/_tf_drawing_classifier.py @@ -12,6 +12,8 @@ import turicreate.toolkits._tf_utils as _utils import tensorflow.compat.v1 as _tf +# This toolkit is compatible with TensorFlow V2 behavior. +# However, until all toolkits are compatible, we must call `disable_v2_behavior()`. _tf.disable_v2_behavior() @@ -20,7 +22,6 @@ def __init__(self, net_params, batch_size, num_classes): """ Defines the TensorFlow model, loss, optimisation and accuracy. Then loads the weights into the model. - """ self.gpu_policy = _utils.TensorFlowGPUPolicy() self.gpu_policy.start() @@ -54,40 +55,34 @@ def init_drawing_classifier_graph(self, net_params): # Weights weights = { - "drawing_conv0_weight": _tf.Variable( - _tf.zeros([3, 3, 1, 16]), name="drawing_conv0_weight" - ), - "drawing_conv1_weight": _tf.Variable( - _tf.zeros([3, 3, 16, 32]), name="drawing_conv1_weight" - ), - "drawing_conv2_weight": _tf.Variable( - _tf.zeros([3, 3, 32, 64]), name="drawing_conv2_weight" - ), - "drawing_dense0_weight": _tf.Variable( - _tf.zeros([576, 128]), name="drawing_dense0_weight" - ), - "drawing_dense1_weight": _tf.Variable( - _tf.zeros([128, self.num_classes]), name="drawing_dense1_weight" - ), + name: _tf.Variable(_utils.convert_conv2d_coreml_to_tf(net_params[name]), name=name) + for name in ("drawing_conv0_weight", + "drawing_conv1_weight", + "drawing_conv2_weight") } + weights["drawing_dense1_weight"] = _tf.Variable( + _utils.convert_dense_coreml_to_tf(net_params["drawing_dense1_weight"]), name="drawing_dense1_weight" + ) + """ + To make output of CoreML pool3 (NCHW) compatible with TF (NHWC). + Decompose FC weights to NCHW. Transpose to NHWC. Reshape back to FC. + """ + coreml_128_576 = net_params["drawing_dense0_weight"] + coreml_128_576 = _np.reshape(coreml_128_576, (128, 64, 3, 3)) + coreml_128_576 = _np.transpose(coreml_128_576, (0, 2, 3, 1)) + coreml_128_576 = _np.reshape(coreml_128_576, (128, 576)) + weights["drawing_dense0_weight"] = _tf.Variable( + _np.transpose(coreml_128_576, (1, 0)), name="drawing_dense0_weight" + ) # Biases biases = { - "drawing_conv0_bias": _tf.Variable( - _tf.zeros([16]), name="drawing_conv0_bias" - ), - "drawing_conv1_bias": _tf.Variable( - _tf.zeros([32]), name="drawing_conv1_bias" - ), - "drawing_conv2_bias": _tf.Variable( - _tf.zeros([64]), name="drawing_conv2_bias" - ), - "drawing_dense0_bias": _tf.Variable( - _tf.zeros([128]), name="drawing_dense0_bias" - ), - "drawing_dense1_bias": _tf.Variable( - _tf.zeros([self.num_classes]), name="drawing_dense1_bias" - ), + name: _tf.Variable(net_params[name], name=name) + for name in ("drawing_conv0_bias", + "drawing_conv1_bias", + "drawing_conv2_bias", + "drawing_dense0_bias", + "drawing_dense1_bias") } conv_1 = _tf.nn.conv2d( @@ -119,13 +114,11 @@ def init_drawing_classifier_graph(self, net_params): # Flatten the data to a 1-D vector for the fully connected layer fc1 = _tf.reshape(pool_3, (-1, 576)) - fc1 = _tf.nn.xw_plus_b( fc1, weights=weights["drawing_dense0_weight"], biases=biases["drawing_dense0_bias"], ) - fc1 = _tf.nn.relu(fc1) out = _tf.nn.xw_plus_b( @@ -133,9 +126,7 @@ def init_drawing_classifier_graph(self, net_params): weights=weights["drawing_dense1_weight"], biases=biases["drawing_dense1_bias"], ) - softmax_out = _tf.nn.softmax(out) - - self.predictions = softmax_out + self.predictions = _tf.nn.softmax(out) # Loss self.cost = _tf.losses.softmax_cross_entropy( @@ -153,60 +144,6 @@ def init_drawing_classifier_graph(self, net_params): self.sess = _tf.Session() self.sess.run(_tf.global_variables_initializer()) - # Assign the initialised weights from C++ to tensorflow - layers = [ - "drawing_conv0_weight", - "drawing_conv0_bias", - "drawing_conv1_weight", - "drawing_conv1_bias", - "drawing_conv2_weight", - "drawing_conv2_bias", - "drawing_dense0_weight", - "drawing_dense0_bias", - "drawing_dense1_weight", - "drawing_dense1_bias", - ] - - for key in layers: - if "bias" in key: - self.sess.run( - _tf.assign( - _tf.get_default_graph().get_tensor_by_name(key + ":0"), - net_params[key], - ) - ) - else: - if "drawing_dense0_weight" in key: - """ - To make output of CoreML pool3 (NCHW) compatible with TF (NHWC). - Decompose FC weights to NCHW. Transpose to NHWC. Reshape back to FC. - """ - coreml_128_576 = net_params[key] - coreml_128_576 = _np.reshape(coreml_128_576, (128, 64, 3, 3)) - coreml_128_576 = _np.transpose(coreml_128_576, (0, 2, 3, 1)) - coreml_128_576 = _np.reshape(coreml_128_576, (128, 576)) - self.sess.run( - _tf.assign( - _tf.get_default_graph().get_tensor_by_name(key + ":0"), - _np.transpose(coreml_128_576, (1, 0)), - ) - ) - elif "dense" in key: - dense_weights = _utils.convert_dense_coreml_to_tf(net_params[key]) - self.sess.run( - _tf.assign( - _tf.get_default_graph().get_tensor_by_name(key + ":0"), - dense_weights, - ) - ) - else: - self.sess.run( - _tf.assign( - _tf.get_default_graph().get_tensor_by_name(key + ":0"), - _utils.convert_conv2d_coreml_to_tf(net_params[key]), - ) - ) - def __del__(self): self.sess.close() self.gpu_policy.stop()