This repository has been archived by the owner on May 6, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 87
/
text.html
725 lines (690 loc) · 79.2 KB
/
text.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
<span id="text"></span><h1><span class="yiyi-st" id="yiyi-55">Working with Text Data</span></h1>
<blockquote>
<p>原文:<a href="http://pandas.pydata.org/pandas-docs/stable/text.html">http://pandas.pydata.org/pandas-docs/stable/text.html</a></p>
<p>译者:<a href="https://github.com/wizardforcel">飞龙</a> <a href="http://usyiyi.cn/">UsyiyiCN</a></p>
<p>校对:(虚位以待)</p>
</blockquote>
<p id="text-string-methods"><span class="yiyi-st" id="yiyi-56">系列和索引都配备了一组字符串处理方法,使其易于对数组的每个元素进行操作。</span><span class="yiyi-st" id="yiyi-57">也许最重要的是,这些方法自动排除丢失/ NA值。</span><span class="yiyi-st" id="yiyi-58">这些通过<code class="docutils literal"><span class="pre">str</span></code>属性访问,通常具有与等效(标量)内置字符串方法匹配的名称:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [1]: </span><span class="n">s</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'A'</span><span class="p">,</span> <span class="s1">'B'</span><span class="p">,</span> <span class="s1">'C'</span><span class="p">,</span> <span class="s1">'Aaba'</span><span class="p">,</span> <span class="s1">'Baca'</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="s1">'CABA'</span><span class="p">,</span> <span class="s1">'dog'</span><span class="p">,</span> <span class="s1">'cat'</span><span class="p">])</span>
<span class="gp">In [2]: </span><span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span>
<span class="gr">Out[2]: </span>
<span class="go">0 a</span>
<span class="go">1 b</span>
<span class="go">2 c</span>
<span class="go">3 aaba</span>
<span class="go">4 baca</span>
<span class="go">5 NaN</span>
<span class="go">6 caba</span>
<span class="go">7 dog</span>
<span class="go">8 cat</span>
<span class="go">dtype: object</span>
<span class="gp">In [3]: </span><span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">upper</span><span class="p">()</span>
<span class="gr">Out[3]: </span>
<span class="go">0 A</span>
<span class="go">1 B</span>
<span class="go">2 C</span>
<span class="go">3 AABA</span>
<span class="go">4 BACA</span>
<span class="go">5 NaN</span>
<span class="go">6 CABA</span>
<span class="go">7 DOG</span>
<span class="go">8 CAT</span>
<span class="go">dtype: object</span>
<span class="gp">In [4]: </span><span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">len</span><span class="p">()</span>
<span class="gr">Out[4]: </span>
<span class="go">0 1.0</span>
<span class="go">1 1.0</span>
<span class="go">2 1.0</span>
<span class="go">3 4.0</span>
<span class="go">4 4.0</span>
<span class="go">5 NaN</span>
<span class="go">6 4.0</span>
<span class="go">7 3.0</span>
<span class="go">8 3.0</span>
<span class="go">dtype: float64</span>
</pre></div>
</div>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [5]: </span><span class="n">idx</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">([</span><span class="s1">' jack'</span><span class="p">,</span> <span class="s1">'jill '</span><span class="p">,</span> <span class="s1">' jesse '</span><span class="p">,</span> <span class="s1">'frank'</span><span class="p">])</span>
<span class="gp">In [6]: </span><span class="n">idx</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">strip</span><span class="p">()</span>
<span class="gr">Out[6]: </span><span class="n">Index</span><span class="p">([</span><span class="s1">u'jack'</span><span class="p">,</span> <span class="s1">u'jill'</span><span class="p">,</span> <span class="s1">u'jesse'</span><span class="p">,</span> <span class="s1">u'frank'</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">'object'</span><span class="p">)</span>
<span class="gp">In [7]: </span><span class="n">idx</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">lstrip</span><span class="p">()</span>
<span class="gr">Out[7]: </span><span class="n">Index</span><span class="p">([</span><span class="s1">u'jack'</span><span class="p">,</span> <span class="s1">u'jill '</span><span class="p">,</span> <span class="s1">u'jesse '</span><span class="p">,</span> <span class="s1">u'frank'</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">'object'</span><span class="p">)</span>
<span class="gp">In [8]: </span><span class="n">idx</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">rstrip</span><span class="p">()</span>
<span class="gr">Out[8]: </span><span class="n">Index</span><span class="p">([</span><span class="s1">u' jack'</span><span class="p">,</span> <span class="s1">u'jill'</span><span class="p">,</span> <span class="s1">u' jesse'</span><span class="p">,</span> <span class="s1">u'frank'</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">'object'</span><span class="p">)</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-59">Index上的字符串方法对清理或转换DataFrame列特别有用。</span><span class="yiyi-st" id="yiyi-60">例如,您可能有具有前导或尾随空格的列:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [9]: </span><span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">randn</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">columns</span><span class="o">=</span><span class="p">[</span><span class="s1">' Column A '</span><span class="p">,</span> <span class="s1">' Column B '</span><span class="p">],</span>
<span class="gp"> ...:</span> <span class="n">index</span><span class="o">=</span><span class="nb">range</span><span class="p">(</span><span class="mi">3</span><span class="p">))</span>
<span class="gp"> ...:</span>
<span class="gp">In [10]: </span><span class="n">df</span>
<span class="gr">Out[10]: </span>
<span class="go"> Column A Column B </span>
<span class="go">0 0.017428 0.039049</span>
<span class="go">1 -2.240248 0.847859</span>
<span class="go">2 -1.342107 0.368828</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-61">由于<code class="docutils literal"><span class="pre">df.columns</span></code>是一个Index对象,我们可以使用<code class="docutils literal"><span class="pre">.str</span></code>存取器</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [11]: </span><span class="n">df</span><span class="o">.</span><span class="n">columns</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">strip</span><span class="p">()</span>
<span class="gr">Out[11]: </span><span class="n">Index</span><span class="p">([</span><span class="s1">u'Column A'</span><span class="p">,</span> <span class="s1">u'Column B'</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">'object'</span><span class="p">)</span>
<span class="gp">In [12]: </span><span class="n">df</span><span class="o">.</span><span class="n">columns</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span>
<span class="gr">Out[12]: </span><span class="n">Index</span><span class="p">([</span><span class="s1">u' column a '</span><span class="p">,</span> <span class="s1">u' column b '</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">'object'</span><span class="p">)</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-62">然后可以根据需要使用这些字符串方法来清理列。</span><span class="yiyi-st" id="yiyi-63">这里我们删除前导和尾随空格,缩小所有名称,并用下划线替换任何剩余的空白:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [13]: </span><span class="n">df</span><span class="o">.</span><span class="n">columns</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">columns</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">strip</span><span class="p">()</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">lower</span><span class="p">()</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">' '</span><span class="p">,</span> <span class="s1">'_'</span><span class="p">)</span>
<span class="gp">In [14]: </span><span class="n">df</span>
<span class="gr">Out[14]: </span>
<span class="go"> column_a column_b</span>
<span class="go">0 0.017428 0.039049</span>
<span class="go">1 -2.240248 0.847859</span>
<span class="go">2 -1.342107 0.368828</span>
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title"><span class="yiyi-st" id="yiyi-64">注意</span></p>
<p><span class="yiyi-st" id="yiyi-65">假如你有一个许多元素都重复的 <code class="docutils literal"><span class="pre">Series</span></code> (i.e. <code class="docutils literal"><span class="pre">Series</span></code> 中唯一元素的数量远小于<code class="docutils literal"><span class="pre">Series</span></code>的长度),将原始的 <code class="docutils literal"><span class="pre">Series</span></code> 转换成<code class="docutils literal"><span class="pre">category</span></code> 然后使用 <code class="docutils literal"><span class="pre">.str.<method></span></code> or <code class="docutils literal"><span class="pre">.dt.<property></span></code>将会更快.</span><span class="yiyi-st" id="yiyi-66">性能差异来自于对<code class="docutils literal"><span class="pre">category</span></code>类型的<code class="docutils literal"><span class="pre">Series</span></code>,字符串操作在<code class="docutils literal"><span class="pre">.categories</span></code>上完成,而不是在每个元素的<code class="docutils literal"><span class="pre">Series</span></code>。</span></p>
<p class="last"><span class="yiyi-st" id="yiyi-67">请注意,类型字符串<code class="docutils literal"><span class="pre">Series</span></code>的比较类型<code class="docutils literal"><span class="pre">category</span></code>与字符串<code class="docutils literal"><span class="pre">.categories</span></code>的<code class="docutils literal"><span class="pre">Series</span></code> (例如,您不能向对方添加字符串:<code class="docutils literal"><span class="pre">s</span> <span class="pre">+</span> <span class="pre">“</span> <span class="pre">”</span> <span class="pre">如果<code class="docutils literal"><span class="pre">s</span></code>是类型<code class="docutils literal"><span class="pre">category</span></code>的<code class="docutils literal"><span class="pre">Series</span></code>,则 <span class="pre"></span> )。</span></code></span><span class="yiyi-st" id="yiyi-68">此外,对类型<code class="docutils literal"><span class="pre">list</span></code>的元素进行操作的<code class="docutils literal"><span class="pre">.str</span></code>方法在这种<code class="docutils literal"><span class="pre">Series</span></code>上不可用。</span></p>
</div>
<div class="section" id="splitting-and-replacing-strings">
<h2><span class="yiyi-st" id="yiyi-69">Splitting and Replacing Strings</span></h2>
<p id="text-split"><span class="yiyi-st" id="yiyi-70"><code class="docutils literal"><span class="pre">split</span></code>等方法返回一系列列表:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [15]: </span><span class="n">s2</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'a_b_c'</span><span class="p">,</span> <span class="s1">'c_d_e'</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="s1">'f_g_h'</span><span class="p">])</span>
<span class="gp">In [16]: </span><span class="n">s2</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'_'</span><span class="p">)</span>
<span class="gr">Out[16]: </span>
<span class="go">0 [a, b, c]</span>
<span class="go">1 [c, d, e]</span>
<span class="go">2 NaN</span>
<span class="go">3 [f, g, h]</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-71">可以使用<code class="docutils literal"><span class="pre">get</span></code>或<code class="docutils literal"><span class="pre">[]</span></code>符号访问拆分列表中的元素:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [17]: </span><span class="n">s2</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'_'</span><span class="p">)</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="gr">Out[17]: </span>
<span class="go">0 b</span>
<span class="go">1 d</span>
<span class="go">2 NaN</span>
<span class="go">3 g</span>
<span class="go">dtype: object</span>
<span class="gp">In [18]: </span><span class="n">s2</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'_'</span><span class="p">)</span><span class="o">.</span><span class="n">str</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="gr">Out[18]: </span>
<span class="go">0 b</span>
<span class="go">1 d</span>
<span class="go">2 NaN</span>
<span class="go">3 g</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-72">使用<code class="docutils literal"><span class="pre">expand</span></code>可以轻松扩展此操作以返回DataFrame。</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [19]: </span><span class="n">s2</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'_'</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gr">Out[19]: </span>
<span class="go"> 0 1 2</span>
<span class="go">0 a b c</span>
<span class="go">1 c d e</span>
<span class="go">2 NaN None None</span>
<span class="go">3 f g h</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-73">也可以限制分割数:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [20]: </span><span class="n">s2</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="s1">'_'</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">n</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="gr">Out[20]: </span>
<span class="go"> 0 1</span>
<span class="go">0 a b_c</span>
<span class="go">1 c d_e</span>
<span class="go">2 NaN None</span>
<span class="go">3 f g_h</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-74"><code class="docutils literal"><span class="pre">rsplit</span></code>类似于<code class="docutils literal"><span class="pre">split</span></code>,除了它在反向工作,即从字符串的末尾到字符串的开头:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [21]: </span><span class="n">s2</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">rsplit</span><span class="p">(</span><span class="s1">'_'</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">n</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="gr">Out[21]: </span>
<span class="go"> 0 1</span>
<span class="go">0 a_b c</span>
<span class="go">1 c_d e</span>
<span class="go">2 NaN None</span>
<span class="go">3 f_g h</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-75">类似<code class="docutils literal"><span class="pre">replace</span></code>和<code class="docutils literal"><span class="pre">findall</span></code>的方法也可以使用<a class="reference external" href="https://docs.python.org/2/library/re.html">正则表达式</a>:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [22]: </span><span class="n">s3</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'A'</span><span class="p">,</span> <span class="s1">'B'</span><span class="p">,</span> <span class="s1">'C'</span><span class="p">,</span> <span class="s1">'Aaba'</span><span class="p">,</span> <span class="s1">'Baca'</span><span class="p">,</span>
<span class="gp"> ....:</span> <span class="s1">''</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="s1">'CABA'</span><span class="p">,</span> <span class="s1">'dog'</span><span class="p">,</span> <span class="s1">'cat'</span><span class="p">])</span>
<span class="gp"> ....:</span>
<span class="gp">In [23]: </span><span class="n">s3</span>
<span class="gr">Out[23]: </span>
<span class="go">0 A</span>
<span class="go">1 B</span>
<span class="go">2 C</span>
<span class="go">3 Aaba</span>
<span class="go">4 Baca</span>
<span class="go">5 </span>
<span class="go">6 NaN</span>
<span class="go">7 CABA</span>
<span class="go">8 dog</span>
<span class="go">9 cat</span>
<span class="go">dtype: object</span>
<span class="gp">In [24]: </span><span class="n">s3</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">'^.a|dog'</span><span class="p">,</span> <span class="s1">'XX-XX '</span><span class="p">,</span> <span class="n">case</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gr">Out[24]: </span>
<span class="go">0 A</span>
<span class="go">1 B</span>
<span class="go">2 C</span>
<span class="go">3 XX-XX ba</span>
<span class="go">4 XX-XX ca</span>
<span class="go">5 </span>
<span class="go">6 NaN</span>
<span class="go">7 XX-XX BA</span>
<span class="go">8 XX-XX </span>
<span class="go">9 XX-XX t</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-76">必须注意保持正则表达式!</span><span class="yiyi-st" id="yiyi-77">例如,以下代码会因为<cite>$</cite>的正则表达式含义而导致麻烦:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="c"># Consider the following badly formatted financial data</span>
<span class="gp">In [25]: </span><span class="n">dollars</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'12'</span><span class="p">,</span> <span class="s1">'-$10'</span><span class="p">,</span> <span class="s1">'$10,000'</span><span class="p">])</span>
<span class="c"># This does what you'd naively expect:</span>
<span class="gp">In [26]: </span><span class="n">dollars</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">'$'</span><span class="p">,</span> <span class="s1">''</span><span class="p">)</span>
<span class="gr">Out[26]: </span>
<span class="go">0 12</span>
<span class="go">1 -10</span>
<span class="go">2 10,000</span>
<span class="go">dtype: object</span>
<span class="c"># But this doesn't:</span>
<span class="gp">In [27]: </span><span class="n">dollars</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">'-$'</span><span class="p">,</span> <span class="s1">'-'</span><span class="p">)</span>
<span class="gr">Out[27]: </span>
<span class="go">0 12</span>
<span class="go">1 -$10</span>
<span class="go">2 $10,000</span>
<span class="go">dtype: object</span>
<span class="c"># We need to escape the special character (for >1 len patterns)</span>
<span class="gp">In [28]: </span><span class="n">dollars</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">replace</span><span class="p">(</span><span class="s1">r'-\$'</span><span class="p">,</span> <span class="s1">'-'</span><span class="p">)</span>
<span class="gr">Out[28]: </span>
<span class="go">0 12</span>
<span class="go">1 -10</span>
<span class="go">2 $10,000</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
</div>
<div class="section" id="indexing-with-str">
<h2><span class="yiyi-st" id="yiyi-78">Indexing with <code class="docutils literal"><span class="pre">.str</span></code></span></h2>
<p id="text-indexing"><span class="yiyi-st" id="yiyi-79">您可以使用<code class="docutils literal"><span class="pre">[]</span></code>表示法直接通过位置位置索引。</span><span class="yiyi-st" id="yiyi-80">如果索引超过字符串的末尾,结果将是<code class="docutils literal"><span class="pre">NaN</span></code>。</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [29]: </span><span class="n">s</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'A'</span><span class="p">,</span> <span class="s1">'B'</span><span class="p">,</span> <span class="s1">'C'</span><span class="p">,</span> <span class="s1">'Aaba'</span><span class="p">,</span> <span class="s1">'Baca'</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span>
<span class="gp"> ....:</span> <span class="s1">'CABA'</span><span class="p">,</span> <span class="s1">'dog'</span><span class="p">,</span> <span class="s1">'cat'</span><span class="p">])</span>
<span class="gp"> ....:</span>
<span class="gp">In [30]: </span><span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="gr">Out[30]: </span>
<span class="go">0 A</span>
<span class="go">1 B</span>
<span class="go">2 C</span>
<span class="go">3 A</span>
<span class="go">4 B</span>
<span class="go">5 NaN</span>
<span class="go">6 C</span>
<span class="go">7 d</span>
<span class="go">8 c</span>
<span class="go">dtype: object</span>
<span class="gp">In [31]: </span><span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="gr">Out[31]: </span>
<span class="go">0 NaN</span>
<span class="go">1 NaN</span>
<span class="go">2 NaN</span>
<span class="go">3 a</span>
<span class="go">4 a</span>
<span class="go">5 NaN</span>
<span class="go">6 A</span>
<span class="go">7 o</span>
<span class="go">8 a</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
</div>
<div class="section" id="extracting-substrings">
<h2><span class="yiyi-st" id="yiyi-81">Extracting Substrings</span></h2>
<div class="section" id="extract-first-match-in-each-subject-extract">
<span id="text-extract"></span><h3><span class="yiyi-st" id="yiyi-82">Extract first match in each subject (extract)</span></h3>
<div class="versionadded">
<p><span class="yiyi-st" id="yiyi-83"><span class="versionmodified">版本0.13.0中的新功能。</span></span></p>
</div>
<div class="admonition warning">
<p class="first admonition-title"><span class="yiyi-st" id="yiyi-84">警告</span></p>
<p class="last"><span class="yiyi-st" id="yiyi-85">在版本0.18.0中,<code class="docutils literal"><span class="pre">extract</span></code>获得了<code class="docutils literal"><span class="pre">expand</span></code>参数。</span><span class="yiyi-st" id="yiyi-86">当<code class="docutils literal"><span class="pre">expand=False</span></code>时,根据主题和正则表达式模式,它返回<code class="docutils literal"><span class="pre">Series</span></code>,<code class="docutils literal"><span class="pre">Index</span></code>或<code class="docutils literal"><span class="pre">DataFrame</span></code> (与0.18.0之前的行为相同)。</span><span class="yiyi-st" id="yiyi-87">当<code class="docutils literal"><span class="pre">expand=True</span></code>时,它始终返回一个<code class="docutils literal"><span class="pre">DataFrame</span></code>,这从用户的角度来看更一致,更少混淆。</span></p>
</div>
<p><span class="yiyi-st" id="yiyi-88"><code class="docutils literal"><span class="pre">extract</span></code>方法接受具有至少一个捕获组的<a class="reference external" href="https://docs.python.org/2/library/re.html">正则表达式</a>。</span></p>
<p><span class="yiyi-st" id="yiyi-89">使用多个组提取正则表达式会返回每个组一个列的DataFrame。</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [32]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'a1'</span><span class="p">,</span> <span class="s1">'b2'</span><span class="p">,</span> <span class="s1">'c3'</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s1">'([ab])(\d)'</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gr">Out[32]: </span>
<span class="go"> 0 1</span>
<span class="go">0 a 1</span>
<span class="go">1 b 2</span>
<span class="go">2 NaN NaN</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-90">不匹配的元素返回填充有<code class="docutils literal"><span class="pre">NaN</span></code>的行。</span><span class="yiyi-st" id="yiyi-91">因此,一系列乱码字符串可以被“转换”为清理过的或更有用的字符串的索引相同的系列或数据帧,而不需要<code class="docutils literal"><span class="pre">get()</span></code>来访问元组或<code class="docutils literal"><span class="pre">re.match</span></code>对象。</span><span class="yiyi-st" id="yiyi-92">结果的dtype始终为对象,即使未找到匹配项,结果只包含<code class="docutils literal"><span class="pre">NaN</span></code>。</span></p>
<p><span class="yiyi-st" id="yiyi-93">命名组喜欢</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [33]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'a1'</span><span class="p">,</span> <span class="s1">'b2'</span><span class="p">,</span> <span class="s1">'c3'</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s1">'(?P<letter>[ab])(?P<digit>\d)'</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gr">Out[33]: </span>
<span class="go"> letter digit</span>
<span class="go">0 a 1</span>
<span class="go">1 b 2</span>
<span class="go">2 NaN NaN</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-94">和可选组</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [34]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'a1'</span><span class="p">,</span> <span class="s1">'b2'</span><span class="p">,</span> <span class="s1">'3'</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s1">'([ab])?(\d)'</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gr">Out[34]: </span>
<span class="go"> 0 1</span>
<span class="go">0 a 1</span>
<span class="go">1 b 2</span>
<span class="go">2 NaN 3</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-95">也可以使用。</span><span class="yiyi-st" id="yiyi-96">请注意,正则表达式中的任何捕获组名称都将用于列名称;否则将使用捕获组编号。</span></p>
<p><span class="yiyi-st" id="yiyi-97">如果<code class="docutils literal"><span class="pre">expand=True</span></code>,则提取具有一个组的正则表达式将返回一个具有一列的<code class="docutils literal"><span class="pre">DataFrame</span></code>。</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [35]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'a1'</span><span class="p">,</span> <span class="s1">'b2'</span><span class="p">,</span> <span class="s1">'c3'</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s1">'[ab](\d)'</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gr">Out[35]: </span>
<span class="go"> 0</span>
<span class="go">0 1</span>
<span class="go">1 2</span>
<span class="go">2 NaN</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-98">如果<code class="docutils literal"><span class="pre">expand=False</span></code>,则返回一个系列。</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [36]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'a1'</span><span class="p">,</span> <span class="s1">'b2'</span><span class="p">,</span> <span class="s1">'c3'</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s1">'[ab](\d)'</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gr">Out[36]: </span>
<span class="go">0 1</span>
<span class="go">1 2</span>
<span class="go">2 NaN</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-99">调用具有正好一个捕获组的正则表达式的<code class="docutils literal"><span class="pre">Index</span></code>,如果<code class="docutils literal"><span class="pre">expand=True</span></code>,则返回一个具有一列的<code class="docutils literal"><span class="pre">DataFrame</span></code></span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [37]: </span><span class="n">s</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s2">"a1"</span><span class="p">,</span> <span class="s2">"b2"</span><span class="p">,</span> <span class="s2">"c3"</span><span class="p">],</span> <span class="p">[</span><span class="s2">"A11"</span><span class="p">,</span> <span class="s2">"B22"</span><span class="p">,</span> <span class="s2">"C33"</span><span class="p">])</span>
<span class="gp">In [38]: </span><span class="n">s</span>
<span class="gr">Out[38]: </span>
<span class="go">A11 a1</span>
<span class="go">B22 b2</span>
<span class="go">C33 c3</span>
<span class="go">dtype: object</span>
<span class="gp">In [39]: </span><span class="n">s</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s2">"(?P<letter>[a-zA-Z])"</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gr">Out[39]: </span>
<span class="go"> letter</span>
<span class="go">0 A</span>
<span class="go">1 B</span>
<span class="go">2 C</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-100">如果<code class="docutils literal"><span class="pre">expand=False</span></code>,则返回<code class="docutils literal"><span class="pre">Index</span></code>。</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [40]: </span><span class="n">s</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s2">"(?P<letter>[a-zA-Z])"</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gr">Out[40]: </span><span class="n">Index</span><span class="p">([</span><span class="s1">u'A'</span><span class="p">,</span> <span class="s1">u'B'</span><span class="p">,</span> <span class="s1">u'C'</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">'object'</span><span class="p">,</span> <span class="n">name</span><span class="o">=</span><span class="s1">u'letter'</span><span class="p">)</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-101">使用具有多个捕获组的正则表达式调用<code class="docutils literal"><span class="pre">Index</span></code>,如果<code class="docutils literal"><span class="pre">expand=True</span></code>,则会返回<code class="docutils literal"><span class="pre">DataFrame</span></code>。</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [41]: </span><span class="n">s</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s2">"(?P<letter>[a-zA-Z])([0-9]+)"</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gr">Out[41]: </span>
<span class="go"> letter 1</span>
<span class="go">0 A 11</span>
<span class="go">1 B 22</span>
<span class="go">2 C 33</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-102">如果<code class="docutils literal"><span class="pre">expand=False</span></code>,则会引发<code class="docutils literal"><span class="pre">ValueError</span></code>。</span></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">s</span><span class="o">.</span><span class="n">index</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="s2">"(?P<letter>[a-zA-Z])([0-9]+)"</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="go">ValueError: only one regex group is supported with Index</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-103">下表总结了<code class="docutils literal"><span class="pre">extract(expand=False)</span></code>(第一列中的输入主题,第一行中正则表达式中的组数)</span></p>
<table border="1" class="docutils">
<colgroup>
<col width="28%">
<col width="31%">
<col width="41%">
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td> </td>
<td><span class="yiyi-st" id="yiyi-104">1组</span></td>
<td><span class="yiyi-st" id="yiyi-105">> 1组</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-106">指数</span></td>
<td><span class="yiyi-st" id="yiyi-107">指数</span></td>
<td><span class="yiyi-st" id="yiyi-108">ValueError</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-109">系列</span></td>
<td><span class="yiyi-st" id="yiyi-110">系列</span></td>
<td><span class="yiyi-st" id="yiyi-111">DataFrame</span></td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="extract-all-matches-in-each-subject-extractall">
<h3><span class="yiyi-st" id="yiyi-112">Extract all matches in each subject (extractall)</span></h3>
<div class="versionadded" id="text-extractall">
<p><span class="yiyi-st" id="yiyi-113"><span class="versionmodified">版本0.18.0中的新功能。</span></span></p>
</div>
<p><span class="yiyi-st" id="yiyi-114">与<code class="docutils literal"><span class="pre">extract</span></code>(仅返回第一个匹配项)不同,</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [42]: </span><span class="n">s</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s2">"a1a2"</span><span class="p">,</span> <span class="s2">"b1"</span><span class="p">,</span> <span class="s2">"c1"</span><span class="p">],</span> <span class="n">index</span><span class="o">=</span><span class="p">[</span><span class="s2">"A"</span><span class="p">,</span> <span class="s2">"B"</span><span class="p">,</span> <span class="s2">"C"</span><span class="p">])</span>
<span class="gp">In [43]: </span><span class="n">s</span>
<span class="gr">Out[43]: </span>
<span class="go">A a1a2</span>
<span class="go">B b1</span>
<span class="go">C c1</span>
<span class="go">dtype: object</span>
<span class="gp">In [44]: </span><span class="n">two_groups</span> <span class="o">=</span> <span class="s1">'(?P<letter>[a-z])(?P<digit>[0-9])'</span>
<span class="gp">In [45]: </span><span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="n">two_groups</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gr">Out[45]: </span>
<span class="go"> letter digit</span>
<span class="go">A a 1</span>
<span class="go">B b 1</span>
<span class="go">C c 1</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-115"><code class="docutils literal"><span class="pre">extractall</span></code>方法返回每个匹配。</span><span class="yiyi-st" id="yiyi-116"><code class="docutils literal"><span class="pre">extractall</span></code>的结果始终是其行上具有<code class="docutils literal"><span class="pre">MultiIndex</span></code>的<code class="docutils literal"><span class="pre">DataFrame</span></code>。</span><span class="yiyi-st" id="yiyi-117"><code class="docutils literal"><span class="pre">MultiIndex</span></code>的最后一个级别命名为<code class="docutils literal"><span class="pre">match</span></code>,并指示主题中的顺序。</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [46]: </span><span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extractall</span><span class="p">(</span><span class="n">two_groups</span><span class="p">)</span>
<span class="gr">Out[46]: </span>
<span class="go"> letter digit</span>
<span class="go"> match </span>
<span class="go">A 0 a 1</span>
<span class="go"> 1 a 2</span>
<span class="go">B 0 b 1</span>
<span class="go">C 0 c 1</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-118">当系列中的每个主题字符串完全匹配一个时,</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [47]: </span><span class="n">s</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'a3'</span><span class="p">,</span> <span class="s1">'b3'</span><span class="p">,</span> <span class="s1">'c2'</span><span class="p">])</span>
<span class="gp">In [48]: </span><span class="n">s</span>
<span class="gr">Out[48]: </span>
<span class="go">0 a3</span>
<span class="go">1 b3</span>
<span class="go">2 c2</span>
<span class="go">dtype: object</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-119">then <code class="docutils literal"><span class="pre">extractall(pat).xs(0,</span> <span class="pre">level='match')</span></code> gives the same result as <code class="docutils literal"><span class="pre">extract(pat)</span></code>.</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [49]: </span><span class="n">extract_result</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extract</span><span class="p">(</span><span class="n">two_groups</span><span class="p">,</span> <span class="n">expand</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gp">In [50]: </span><span class="n">extract_result</span>
<span class="gr">Out[50]: </span>
<span class="go"> letter digit</span>
<span class="go">0 a 3</span>
<span class="go">1 b 3</span>
<span class="go">2 c 2</span>
<span class="gp">In [51]: </span><span class="n">extractall_result</span> <span class="o">=</span> <span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extractall</span><span class="p">(</span><span class="n">two_groups</span><span class="p">)</span>
<span class="gp">In [52]: </span><span class="n">extractall_result</span>
<span class="gr">Out[52]: </span>
<span class="go"> letter digit</span>
<span class="go"> match </span>
<span class="go">0 0 a 3</span>
<span class="go">1 0 b 3</span>
<span class="go">2 0 c 2</span>
<span class="gp">In [53]: </span><span class="n">extractall_result</span><span class="o">.</span><span class="n">xs</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">level</span><span class="o">=</span><span class="s2">"match"</span><span class="p">)</span>
<span class="gr">Out[53]: </span>
<span class="go"> letter digit</span>
<span class="go">0 a 3</span>
<span class="go">1 b 3</span>
<span class="go">2 c 2</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-120"><code class="docutils literal"><span class="pre">Index</span></code>也支持<code class="docutils literal"><span class="pre">.str.extractall</span></code>。</span><span class="yiyi-st" id="yiyi-121">它返回一个<code class="docutils literal"><span class="pre">DataFrame</span></code>,其结果与具有默认索引(从0开始)的<code class="docutils literal"><span class="pre">Series.str.extractall</span></code>相同。</span></p>
<div class="versionadded">
<p><span class="yiyi-st" id="yiyi-122"><span class="versionmodified">版本0.19.0中的新功能。</span></span></p>
</div>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [54]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">([</span><span class="s2">"a1a2"</span><span class="p">,</span> <span class="s2">"b1"</span><span class="p">,</span> <span class="s2">"c1"</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extractall</span><span class="p">(</span><span class="n">two_groups</span><span class="p">)</span>
<span class="gr">Out[54]: </span>
<span class="go"> letter digit</span>
<span class="go"> match </span>
<span class="go">0 0 a 1</span>
<span class="go"> 1 a 2</span>
<span class="go">1 0 b 1</span>
<span class="go">2 0 c 1</span>
<span class="gp">In [55]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s2">"a1a2"</span><span class="p">,</span> <span class="s2">"b1"</span><span class="p">,</span> <span class="s2">"c1"</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">extractall</span><span class="p">(</span><span class="n">two_groups</span><span class="p">)</span>
<span class="gr">Out[55]: </span>
<span class="go"> letter digit</span>
<span class="go"> match </span>
<span class="go">0 0 a 1</span>
<span class="go"> 1 a 2</span>
<span class="go">1 0 b 1</span>
<span class="go">2 0 c 1</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="testing-for-strings-that-match-or-contain-a-pattern">
<h2><span class="yiyi-st" id="yiyi-123">Testing for Strings that Match or Contain a Pattern</span></h2>
<p><span class="yiyi-st" id="yiyi-124">您可以检查元素是否包含模式:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [56]: </span><span class="n">pattern</span> <span class="o">=</span> <span class="s1">r'[a-z][0-9]'</span>
<span class="gp">In [57]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'1'</span><span class="p">,</span> <span class="s1">'2'</span><span class="p">,</span> <span class="s1">'3a'</span><span class="p">,</span> <span class="s1">'3b'</span><span class="p">,</span> <span class="s1">'03c'</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">contains</span><span class="p">(</span><span class="n">pattern</span><span class="p">)</span>
<span class="gr">Out[57]: </span>
<span class="go">0 False</span>
<span class="go">1 False</span>
<span class="go">2 False</span>
<span class="go">3 False</span>
<span class="go">4 False</span>
<span class="go">dtype: bool</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-125">或匹配模式:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [58]: </span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'1'</span><span class="p">,</span> <span class="s1">'2'</span><span class="p">,</span> <span class="s1">'3a'</span><span class="p">,</span> <span class="s1">'3b'</span><span class="p">,</span> <span class="s1">'03c'</span><span class="p">])</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">match</span><span class="p">(</span><span class="n">pattern</span><span class="p">,</span> <span class="n">as_indexer</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="gr">Out[58]: </span>
<span class="go">0 False</span>
<span class="go">1 False</span>
<span class="go">2 False</span>
<span class="go">3 False</span>
<span class="go">4 False</span>
<span class="go">dtype: bool</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-126"><code class="docutils literal"><span class="pre">match</span></code>和<code class="docutils literal"><span class="pre">contains</span></code>是strictness:<code class="docutils literal"><span class="pre">match</span></code>依赖于strict <code class="docutils literal"><span class="pre">re.match</span></code>,而<code class="docutils literal"><span class="pre">contains</span></code>依赖于<code class="docutils literal"><span class="pre">re.search</span></code>。</span></p>
<div class="admonition warning">
<p class="first admonition-title"><span class="yiyi-st" id="yiyi-127">警告</span></p>
<p><span class="yiyi-st" id="yiyi-128">在先前版本中,<code class="docutils literal"><span class="pre">match</span></code>用于<em>提取</em>组,返回不那么方便的系列元组。</span><span class="yiyi-st" id="yiyi-129">现在优选新方法<code class="docutils literal"><span class="pre">extract</span></code>(在上一部分中描述)。</span></p>
<p class="last"><span class="yiyi-st" id="yiyi-130"><code class="docutils literal"><span class="pre">match</span></code>的旧的,已弃用的行为仍是默认行为。</span><span class="yiyi-st" id="yiyi-131">如上所述,通过设置<code class="docutils literal"><span class="pre">as_indexer=True</span></code>来使用新的行为。</span><span class="yiyi-st" id="yiyi-132">在此模式下,<code class="docutils literal"><span class="pre">match</span></code>类似于<code class="docutils literal"><span class="pre">contains</span></code>,返回一个布尔系列。</span><span class="yiyi-st" id="yiyi-133">新行为将成为未来版本中的默认行为。</span></p>
</div>
<dl class="docutils">
<dt><span class="yiyi-st" id="yiyi-134"><code class="docutils literal"><span class="pre">match</span></code>,<code class="docutils literal"><span class="pre">contains</span></code>,<code class="docutils literal"><span class="pre">startswith</span></code>和<code class="docutils literal"><span class="pre">endswith</span></code> take</span></dt>
<dd><span class="yiyi-st" id="yiyi-135">额外的<code class="docutils literal"><span class="pre">na</span></code>参数,因此缺少的值可以被视为True或False:</span></dd>
</dl>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [59]: </span><span class="n">s4</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'A'</span><span class="p">,</span> <span class="s1">'B'</span><span class="p">,</span> <span class="s1">'C'</span><span class="p">,</span> <span class="s1">'Aaba'</span><span class="p">,</span> <span class="s1">'Baca'</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="s1">'CABA'</span><span class="p">,</span> <span class="s1">'dog'</span><span class="p">,</span> <span class="s1">'cat'</span><span class="p">])</span>
<span class="gp">In [60]: </span><span class="n">s4</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">contains</span><span class="p">(</span><span class="s1">'A'</span><span class="p">,</span> <span class="n">na</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="gr">Out[60]: </span>
<span class="go">0 True</span>
<span class="go">1 False</span>
<span class="go">2 False</span>
<span class="go">3 True</span>
<span class="go">4 False</span>
<span class="go">5 False</span>
<span class="go">6 True</span>
<span class="go">7 False</span>
<span class="go">8 False</span>
<span class="go">dtype: bool</span>
</pre></div>
</div>
</div>
<div class="section" id="creating-indicator-variables">
<span id="text-indicator"></span><h2><span class="yiyi-st" id="yiyi-136">Creating Indicator Variables</span></h2>
<p><span class="yiyi-st" id="yiyi-137">您可以从字符串列中提取虚拟变量。</span><span class="yiyi-st" id="yiyi-138">例如,如果它们由<code class="docutils literal"><span class="pre">'|'</span></code>分隔:</span></p>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [61]: </span><span class="n">s</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">([</span><span class="s1">'a'</span><span class="p">,</span> <span class="s1">'a|b'</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="s1">'a|c'</span><span class="p">])</span>
<span class="gp">In [62]: </span><span class="n">s</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">get_dummies</span><span class="p">(</span><span class="n">sep</span><span class="o">=</span><span class="s1">'|'</span><span class="p">)</span>
<span class="gr">Out[62]: </span>
<span class="go"> a b c</span>
<span class="go">0 1 0 0</span>
<span class="go">1 1 1 0</span>
<span class="go">2 0 0 0</span>
<span class="go">3 1 0 1</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-139">字符串<code class="docutils literal"><span class="pre">Index</span></code>还支持<code class="docutils literal"><span class="pre">get_dummies</span></code>,它返回<code class="docutils literal"><span class="pre">MultiIndex</span></code>。</span></p>
<div class="versionadded">
<p><span class="yiyi-st" id="yiyi-140"><span class="versionmodified">版本0.18.1中的新功能。</span></span></p>
</div>
<div class="highlight-ipython"><div class="highlight"><pre><span></span><span class="gp">In [63]: </span><span class="n">idx</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">([</span><span class="s1">'a'</span><span class="p">,</span> <span class="s1">'a|b'</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">nan</span><span class="p">,</span> <span class="s1">'a|c'</span><span class="p">])</span>
<span class="gp">In [64]: </span><span class="n">idx</span><span class="o">.</span><span class="n">str</span><span class="o">.</span><span class="n">get_dummies</span><span class="p">(</span><span class="n">sep</span><span class="o">=</span><span class="s1">'|'</span><span class="p">)</span>
<span class="gr">Out[64]: </span>
<span class="go">MultiIndex(levels=[[0, 1], [0, 1], [0, 1]],</span>
<span class="go"> labels=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]],</span>
<span class="go"> names=[u'a', u'b', u'c'])</span>
</pre></div>
</div>
<p><span class="yiyi-st" id="yiyi-141">另请参见<a class="reference internal" href="generated/pandas.get_dummies.html#pandas.get_dummies" title="pandas.get_dummies"><code class="xref py py-func docutils literal"><span class="pre">get_dummies()</span></code></a>。</span></p>
</div>
<div class="section" id="method-summary">
<h2><span class="yiyi-st" id="yiyi-142">Method Summary</span></h2>
<table border="1" class="docutils" id="text-summary">
<colgroup>
<col width="20%">
<col width="80%">
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head"><span class="yiyi-st" id="yiyi-143">方法</span></th>
<th class="head"><span class="yiyi-st" id="yiyi-144">描述</span></th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-145"><a class="reference internal" href="generated/pandas.Series.str.cat.html#pandas.Series.str.cat" title="pandas.Series.str.cat"><code class="xref py py-meth docutils literal"><span class="pre">cat()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-146">串联字符串</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-147"><a class="reference internal" href="generated/pandas.Series.str.split.html#pandas.Series.str.split" title="pandas.Series.str.split"><code class="xref py py-meth docutils literal"><span class="pre">split()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-148">拆分分隔符上的字符串</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-149"><a class="reference internal" href="generated/pandas.Series.str.rsplit.html#pandas.Series.str.rsplit" title="pandas.Series.str.rsplit"><code class="xref py py-meth docutils literal"><span class="pre">rsplit()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-150">从字符串末尾拆分分隔符上的字符串</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-151"><a class="reference internal" href="generated/pandas.Series.str.get.html#pandas.Series.str.get" title="pandas.Series.str.get"><code class="xref py py-meth docutils literal"><span class="pre">get()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-152">索引到每个元素(检索第i个元素)</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-153"><a class="reference internal" href="generated/pandas.Series.str.join.html#pandas.Series.str.join" title="pandas.Series.str.join"><code class="xref py py-meth docutils literal"><span class="pre">join()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-154">使用传递的分隔符在系列的每个元素中连接字符串</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-155"><a class="reference internal" href="generated/pandas.Series.str.get_dummies.html#pandas.Series.str.get_dummies" title="pandas.Series.str.get_dummies"><code class="xref py py-meth docutils literal"><span class="pre">get_dummies()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-156">在分隔符上分割字符串,返回虚拟变量的DataFrame</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-157"><a class="reference internal" href="generated/pandas.Series.str.contains.html#pandas.Series.str.contains" title="pandas.Series.str.contains"><code class="xref py py-meth docutils literal"><span class="pre">contains()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-158">如果每个字符串包含pattern / regex,则返回布尔数组</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-159"><a class="reference internal" href="generated/pandas.Series.str.replace.html#pandas.Series.str.replace" title="pandas.Series.str.replace"><code class="xref py py-meth docutils literal"><span class="pre">replace()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-160">用一些其他字符串替换模式/正则表达式的出现</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-161"><a class="reference internal" href="generated/pandas.Series.str.repeat.html#pandas.Series.str.repeat" title="pandas.Series.str.repeat"><code class="xref py py-meth docutils literal"><span class="pre">repeat()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-162">重复的值(<code class="docutils literal"><span class="pre">s.str.repeat(3)</span></code>等效于<code class="docutils literal"><span class="pre">x</span> <span class="pre">*</span> <span class="pre">3</span> t2 >)</code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-163"><a class="reference internal" href="generated/pandas.Series.str.pad.html#pandas.Series.str.pad" title="pandas.Series.str.pad"><code class="xref py py-meth docutils literal"><span class="pre">pad()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-164">向字符串的左侧,右侧或两侧添加空格</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-165"><a class="reference internal" href="generated/pandas.Series.str.center.html#pandas.Series.str.center" title="pandas.Series.str.center"><code class="xref py py-meth docutils literal"><span class="pre">center()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-166">等效于<code class="docutils literal"><span class="pre">str.center</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-167"><a class="reference internal" href="generated/pandas.Series.str.ljust.html#pandas.Series.str.ljust" title="pandas.Series.str.ljust"><code class="xref py py-meth docutils literal"><span class="pre">ljust()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-168">等效于<code class="docutils literal"><span class="pre">str.ljust</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-169"><a class="reference internal" href="generated/pandas.Series.str.rjust.html#pandas.Series.str.rjust" title="pandas.Series.str.rjust"><code class="xref py py-meth docutils literal"><span class="pre">rjust()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-170">等效于<code class="docutils literal"><span class="pre">str.rjust</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-171"><a class="reference internal" href="generated/pandas.Series.str.zfill.html#pandas.Series.str.zfill" title="pandas.Series.str.zfill"><code class="xref py py-meth docutils literal"><span class="pre">zfill()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-172">等效于<code class="docutils literal"><span class="pre">str.zfill</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-173"><a class="reference internal" href="generated/pandas.Series.str.wrap.html#pandas.Series.str.wrap" title="pandas.Series.str.wrap"><code class="xref py py-meth docutils literal"><span class="pre">wrap()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-174">将长字符串拆分成长度小于给定宽度的行</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-175"><a class="reference internal" href="generated/pandas.Series.str.slice.html#pandas.Series.str.slice" title="pandas.Series.str.slice"><code class="xref py py-meth docutils literal"><span class="pre">slice()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-176">切割系列中的每个字符串</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-177"><a class="reference internal" href="generated/pandas.Series.str.slice_replace.html#pandas.Series.str.slice_replace" title="pandas.Series.str.slice_replace"><code class="xref py py-meth docutils literal"><span class="pre">slice_replace()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-178">使用传递的值替换每个字符串中的slice</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-179"><a class="reference internal" href="generated/pandas.Series.str.count.html#pandas.Series.str.count" title="pandas.Series.str.count"><code class="xref py py-meth docutils literal"><span class="pre">count()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-180">计算模式的出现次数</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-181"><a class="reference internal" href="generated/pandas.Series.str.startswith.html#pandas.Series.str.startswith" title="pandas.Series.str.startswith"><code class="xref py py-meth docutils literal"><span class="pre">startswith()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-182">对于每个元素,等于<code class="docutils literal"><span class="pre">str.startswith(pat)</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-183"><a class="reference internal" href="generated/pandas.Series.str.endswith.html#pandas.Series.str.endswith" title="pandas.Series.str.endswith"><code class="xref py py-meth docutils literal"><span class="pre">endswith()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-184">对于每个元素,等于<code class="docutils literal"><span class="pre">str.endswith(pat)</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-185"><a class="reference internal" href="generated/pandas.Series.str.findall.html#pandas.Series.str.findall" title="pandas.Series.str.findall"><code class="xref py py-meth docutils literal"><span class="pre">findall()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-186">计算每个字符串的所有匹配模式/正则表达式的列表</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-187"><a class="reference internal" href="generated/pandas.Series.str.match.html#pandas.Series.str.match" title="pandas.Series.str.match"><code class="xref py py-meth docutils literal"><span class="pre">match()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-188">在每个元素上调用<code class="docutils literal"><span class="pre">re.match</span></code>,返回匹配的组作为列表</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-189"><a class="reference internal" href="generated/pandas.Series.str.extract.html#pandas.Series.str.extract" title="pandas.Series.str.extract"><code class="xref py py-meth docutils literal"><span class="pre">extract()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-190">在每个元素上调用<code class="docutils literal"><span class="pre">re.search</span></code>,返回DataFrame,每个元素使用一行,每个正则表达式捕获组使用一列</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-191"><a class="reference internal" href="generated/pandas.Series.str.extractall.html#pandas.Series.str.extractall" title="pandas.Series.str.extractall"><code class="xref py py-meth docutils literal"><span class="pre">extractall()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-192">在每个元素上调用<code class="docutils literal"><span class="pre">re.findall</span></code>,返回DataFrame,每个匹配包含一行,每个正则表达式捕获组包含一个列</span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-193"><a class="reference internal" href="generated/pandas.Series.str.len.html#pandas.Series.str.len" title="pandas.Series.str.len"><code class="xref py py-meth docutils literal"><span class="pre">len()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-194">计算字符串长度</span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-195"><a class="reference internal" href="generated/pandas.Series.str.strip.html#pandas.Series.str.strip" title="pandas.Series.str.strip"><code class="xref py py-meth docutils literal"><span class="pre">strip()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-196">等效于<code class="docutils literal"><span class="pre">str.strip</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-197"><a class="reference internal" href="generated/pandas.Series.str.rstrip.html#pandas.Series.str.rstrip" title="pandas.Series.str.rstrip"><code class="xref py py-meth docutils literal"><span class="pre">rstrip()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-198">等效于<code class="docutils literal"><span class="pre">str.rstrip</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-199"><a class="reference internal" href="generated/pandas.Series.str.lstrip.html#pandas.Series.str.lstrip" title="pandas.Series.str.lstrip"><code class="xref py py-meth docutils literal"><span class="pre">lstrip()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-200">等同于<code class="docutils literal"><span class="pre">str.lstrip</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-201"><a class="reference internal" href="generated/pandas.Series.str.partition.html#pandas.Series.str.partition" title="pandas.Series.str.partition"><code class="xref py py-meth docutils literal"><span class="pre">partition()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-202">等效于<code class="docutils literal"><span class="pre">str.partition</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-203"><a class="reference internal" href="generated/pandas.Series.str.rpartition.html#pandas.Series.str.rpartition" title="pandas.Series.str.rpartition"><code class="xref py py-meth docutils literal"><span class="pre">rpartition()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-204">等效于<code class="docutils literal"><span class="pre">str.rpartition</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-205"><a class="reference internal" href="generated/pandas.Series.str.lower.html#pandas.Series.str.lower" title="pandas.Series.str.lower"><code class="xref py py-meth docutils literal"><span class="pre">lower()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-206">等效于<code class="docutils literal"><span class="pre">str.lower</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-207"><a class="reference internal" href="generated/pandas.Series.str.upper.html#pandas.Series.str.upper" title="pandas.Series.str.upper"><code class="xref py py-meth docutils literal"><span class="pre">upper()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-208">等效于<code class="docutils literal"><span class="pre">str.upper</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-209"><a class="reference internal" href="generated/pandas.Series.str.find.html#pandas.Series.str.find" title="pandas.Series.str.find"><code class="xref py py-meth docutils literal"><span class="pre">find()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-210">等同于<code class="docutils literal"><span class="pre">str.find</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-211"><a class="reference internal" href="generated/pandas.Series.str.rfind.html#pandas.Series.str.rfind" title="pandas.Series.str.rfind"><code class="xref py py-meth docutils literal"><span class="pre">rfind()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-212">等效于<code class="docutils literal"><span class="pre">str.rfind</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-213"><a class="reference internal" href="generated/pandas.Series.str.index.html#pandas.Series.str.index" title="pandas.Series.str.index"><code class="xref py py-meth docutils literal"><span class="pre">index()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-214">等效于<code class="docutils literal"><span class="pre">str.index</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-215"><a class="reference internal" href="generated/pandas.Series.str.rindex.html#pandas.Series.str.rindex" title="pandas.Series.str.rindex"><code class="xref py py-meth docutils literal"><span class="pre">rindex()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-216">等效于<code class="docutils literal"><span class="pre">str.rindex</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-217"><a class="reference internal" href="generated/pandas.Series.str.capitalize.html#pandas.Series.str.capitalize" title="pandas.Series.str.capitalize"><code class="xref py py-meth docutils literal"><span class="pre">capitalize()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-218">等效于<code class="docutils literal"><span class="pre">str.capitalize</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-219"><a class="reference internal" href="generated/pandas.Series.str.swapcase.html#pandas.Series.str.swapcase" title="pandas.Series.str.swapcase"><code class="xref py py-meth docutils literal"><span class="pre">swapcase()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-220">等效于<code class="docutils literal"><span class="pre">str.swapcase</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-221"><a class="reference internal" href="generated/pandas.Series.str.normalize.html#pandas.Series.str.normalize" title="pandas.Series.str.normalize"><code class="xref py py-meth docutils literal"><span class="pre">normalize()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-222">返回Unicode正常表单。</span><span class="yiyi-st" id="yiyi-223">等同于<code class="docutils literal"><span class="pre">unicodedata.normalize</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-224"><a class="reference internal" href="generated/pandas.Series.str.translate.html#pandas.Series.str.translate" title="pandas.Series.str.translate"><code class="xref py py-meth docutils literal"><span class="pre">translate()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-225">等效于<code class="docutils literal"><span class="pre">str.translate</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-226"><a class="reference internal" href="generated/pandas.Series.str.isalnum.html#pandas.Series.str.isalnum" title="pandas.Series.str.isalnum"><code class="xref py py-meth docutils literal"><span class="pre">isalnum()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-227">等效于<code class="docutils literal"><span class="pre">str.isalnum</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-228"><a class="reference internal" href="generated/pandas.Series.str.isalpha.html#pandas.Series.str.isalpha" title="pandas.Series.str.isalpha"><code class="xref py py-meth docutils literal"><span class="pre">isalpha()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-229">等效于<code class="docutils literal"><span class="pre">str.isalpha</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-230"><a class="reference internal" href="generated/pandas.Series.str.isdigit.html#pandas.Series.str.isdigit" title="pandas.Series.str.isdigit"><code class="xref py py-meth docutils literal"><span class="pre">isdigit()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-231">等效于<code class="docutils literal"><span class="pre">str.isdigit</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-232"><a class="reference internal" href="generated/pandas.Series.str.isspace.html#pandas.Series.str.isspace" title="pandas.Series.str.isspace"><code class="xref py py-meth docutils literal"><span class="pre">isspace()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-233">等效于<code class="docutils literal"><span class="pre">str.isspace</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-234"><a class="reference internal" href="generated/pandas.Series.str.islower.html#pandas.Series.str.islower" title="pandas.Series.str.islower"><code class="xref py py-meth docutils literal"><span class="pre">islower()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-235">等效于<code class="docutils literal"><span class="pre">str.islower</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-236"><a class="reference internal" href="generated/pandas.Series.str.isupper.html#pandas.Series.str.isupper" title="pandas.Series.str.isupper"><code class="xref py py-meth docutils literal"><span class="pre">isupper()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-237">等效于<code class="docutils literal"><span class="pre">str.isupper</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-238"><a class="reference internal" href="generated/pandas.Series.str.istitle.html#pandas.Series.str.istitle" title="pandas.Series.str.istitle"><code class="xref py py-meth docutils literal"><span class="pre">istitle()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-239">等同于<code class="docutils literal"><span class="pre">str.istitle</span></code></span></td>
</tr>
<tr class="row-odd"><td><span class="yiyi-st" id="yiyi-240"><a class="reference internal" href="generated/pandas.Series.str.isnumeric.html#pandas.Series.str.isnumeric" title="pandas.Series.str.isnumeric"><code class="xref py py-meth docutils literal"><span class="pre">isnumeric()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-241">等效于<code class="docutils literal"><span class="pre">str.isnumeric</span></code></span></td>
</tr>
<tr class="row-even"><td><span class="yiyi-st" id="yiyi-242"><a class="reference internal" href="generated/pandas.Series.str.isdecimal.html#pandas.Series.str.isdecimal" title="pandas.Series.str.isdecimal"><code class="xref py py-meth docutils literal"><span class="pre">isdecimal()</span></code></a></span></td>
<td><span class="yiyi-st" id="yiyi-243">等效于<code class="docutils literal"><span class="pre">str.isdecimal</span></code></span></td>
</tr>
</tbody>
</table>
</div>