-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutils.py
329 lines (286 loc) · 11.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import numpy as np
def convert_to_vocab_id(vocab, pos, neg, convert_vocab=True, ignore_unk=False, ign_eos=False):
# binary class
# Positive => 1
# Negative => 0
dataset_x = []
dataset_x_length = []
dataset_y = []
def conv(words):
if ignore_unk:
return [vocab.get(w, 1) for w in words if w in vocab]
else:
return [vocab.get(w, 1) for w in words]
for words in pos:
if convert_vocab:
if ign_eos:
conv_words = conv(words)
else:
conv_words = conv(words) + [0]
word_ids = np.array(conv_words, dtype=np.int32) # EOS
else:
word_ids = ' '.join(words)
dataset_x.append(word_ids)
dataset_x_length.append(len(word_ids))
dataset_y.append(1)
for words in neg:
if convert_vocab:
if ign_eos:
conv_words = conv(words)
else:
conv_words = conv(words) + [0]
word_ids = np.array(conv_words, dtype=np.int32) # EOS
else:
word_ids = ' '.join(words)
dataset_x.append(word_ids)
dataset_x_length.append(len(word_ids))
dataset_y.append(0)
dataset_y = np.array(dataset_y, dtype=np.int32)
return dataset_x, dataset_x_length, dataset_y
def load_file_preprocess(filename, lower=True):
dataset = []
def conv(w):
if lower:
return w.lower()
return w
with open(filename, 'r') as f:
for l in f:
words = [conv(w) for w in l.strip().split(' ')]
dataset.append(words)
return dataset
def load_dataset_imdb(include_pretrain=False, convert_vocab=True, lower=True,
min_count=0, ignore_unk=False, use_semi_data=False,
add_labeld_to_unlabel=True):
lm_dataset = None
imdb_validation_pos_start_id = 10621 # total size: 12499
imdb_validation_neg_start_id = 10625
pos_train = load_file_preprocess('data/imdb/imdb_pos_train.txt', lower=lower)
pos_dev = load_file_preprocess('data/imdb/imdb_pos_dev.txt', lower=lower)
neg_train = load_file_preprocess('data/imdb/imdb_neg_train.txt', lower=lower)
neg_dev = load_file_preprocess('data/imdb/imdb_neg_dev.txt', lower=lower)
if include_pretrain:
# Pretrain with LM
unlabled_lm_train = load_file_preprocess('data/imdb/imdb_unlabled.txt', lower=lower)
pos_test = load_file_preprocess('data/imdb/imdb_pos_test.txt', lower=lower)
neg_test = load_file_preprocess('data/imdb/imdb_neg_test.txt', lower=lower)
train_set = pos_train + neg_train
if include_pretrain:
# Pretrain with LM
train_set += unlabled_lm_train
word_nums = [float(len(words)) for words in train_set]
print('train_set:{}'.format(len(train_set)))
print('avg word number:{}'.format(sum(word_nums) / len(word_nums)))
vocab = {}
vocab['<eos>'] = 0 # EOS
vocab['<unk>'] = 1 # EOS
word_cnt = {}
for words in train_set:
for w in words:
if lower:
w = w.lower()
word_cnt[w] = word_cnt.get(w, 0) + 1
doc_counts = {}
for words in train_set:
doc_seen = set()
for w in words:
if w not in doc_seen:
doc_counts[w] = doc_counts.get(w, 0) + 1
doc_seen.add(w)
for words in train_set:
for w in words:
if lower:
w = w.lower()
if w not in vocab and doc_counts[w] > min_count:
vocab[w] = len(vocab)
print('vocab:{}'.format(len(vocab)))
vocab_limit = {}
for words in pos_train + neg_train:
for w in words:
if lower:
w = w.lower()
if w not in vocab_limit and doc_counts[w] > min_count:
vocab_limit[w] = len(vocab_limit)
train_vocab_size = len(vocab_limit)
train_x, train_x_len, train_y = convert_to_vocab_id(vocab, pos_train,
neg_train, convert_vocab=convert_vocab, ignore_unk=ignore_unk)
word_nums = [len(x) for x in train_x]
print('avg word number (train_x): {}'.format(sum(word_nums) / len(word_nums)))
dev_x, dev_x_len, dev_y = convert_to_vocab_id(
vocab, pos_dev, neg_dev, convert_vocab=convert_vocab, ignore_unk=ignore_unk)
word_nums = [len(x) for x in dev_x]
print('avg word number (dev_x):{}'.format(sum(word_nums) / len(word_nums)))
test_x, test_x_len, test_y = convert_to_vocab_id(
vocab, pos_test, neg_test, convert_vocab=convert_vocab, ignore_unk=ignore_unk)
word_nums = [len(x) for x in test_x]
print('avg word number (test_x):{}'.format(sum(word_nums) / len(word_nums)))
dataset = (train_x, train_x_len, train_y,
dev_x, dev_x_len, dev_y,
test_x, test_x_len, test_y)
if include_pretrain:
lm_train_x, _, _ = convert_to_vocab_id(vocab, unlabled_lm_train, [], ignore_unk=ignore_unk)
lm_train_all = lm_train_x
if add_labeld_to_unlabel:
lm_train_all += train_x
lm_dev_all = test_x
lm_train_words_num = sum([len(x) for x in lm_train_all])
lm_dev_words_num = sum([len(x) for x in lm_dev_all])
print('lm_words_num:{}'.format(lm_train_words_num))
lm_train_dataset = np.concatenate(lm_train_all, axis=0).astype(np.int32)
lm_dev_dataset = np.concatenate(lm_dev_all, axis=0).astype(np.int32)
lm_dataset = (lm_train_dataset, lm_dev_dataset)
if use_semi_data:
lm_train_all_length = [len(x) for x in lm_train_all]
lm_dataset = (lm_train_all, lm_train_all_length)
vocab_tuple = (vocab, doc_counts)
return vocab_tuple, dataset, lm_dataset, train_vocab_size
# FCE
def load_file_preprocess_fce_replace(filename, lower=True, ign_eos=False):
dataset_correct = []
dataset_wrong = []
y_tags = []
def conv(w, correct_flag=True):
if correct_flag:
w = w.split('::')[0]
else:
w = w.split('::')[-1]
if lower:
return w.lower()
return w
add_eos = [1]
if ign_eos is True:
add_eos = []
for l in open(filename):
words = l.strip().split(' ')
dataset_correct.append([conv(w, False) for w in words])
dataset_wrong.append([conv(w, True) for w in words])
y = [0 if len(w.split('::')) >= 2 else 1 for w in words] + add_eos
y = np.array(y, dtype=np.int32)
y_tags.append(y)
return dataset_correct, dataset_wrong, y_tags
# [WIP]
def load_fce(lower=False, min_count=1, ignore_unk=False, use_all_for_lm=False, use_char=False, use_w2v_flag=0, use_semi_data=False):
dirpath = './gramatical_error/fce-error-detection/tsv/'
# TODO: replace `::` => split to two differenct text
ign_eos = True
train_x_raw, train_y = load_file_preprocess_fce(dirpath + 'fce-public.train.original.tsv', lower=lower, ign_eos=ign_eos)
dev_x_raw, dev_y = load_file_preprocess_fce(dirpath + 'fce-public.dev.original.tsv', lower=lower, ign_eos=ign_eos)
test_x_raw, test_y = load_file_preprocess_fce(dirpath + 'fce-public.test.original.tsv', lower=lower, ign_eos=ign_eos)
w2v = None
if use_w2v_flag == -1:
vocab = {}
vocab['<eos>'] = 0 # EOS
vocab['<unk>'] = 1 # EOS
doc_counts = {}
embedding = './grammatical-error-detection/embedding.txt' # /GWE [Kaneko et al., 2017]
f = open(embedding)
f.readline()
# import gensim
# from gensim.models.keyedvectors import KeyedVectors
# w2v = KeyedVectors.load_word2vec_format(embedding, binary=False)
w2v = {}
vecs = []
for l in f:
l = l.strip()
w, vec = l.split(' ')[0], l.split(' ')[1:]
vec = np.array(vec).astype('f')
if lower:
w = w.lower()
if min_count == -1:
vocab[w] = len(vocab)
w2v[w] = vec
vecs.append(vec)
train_set = train_x_raw
# print 'train_set:', len(train_set)
if min_count == -2:
train_set = train_x_raw + dev_x_raw + test_x_raw
# print 'train_set:', len(train_set)
# print 'min_count:', min_count
doc_counts = {}
for words in train_set:
doc_seen = set()
for w in words:
if lower:
w = w.lower()
if w not in doc_seen:
doc_counts[w] = doc_counts.get(w, 0) + 1
doc_seen.add(w)
for words in train_set:
for w in words:
if lower:
w = w.lower()
if w not in vocab and doc_counts[w] > min_count:
if min_count >= 0 or min_count == -2:
vocab[w] = len(vocab)
vecs = np.array(vecs).astype('f')
for words in train_set:
for w in words:
if lower:
w = w.lower()
if w in vocab:
doc_counts[w] = doc_counts.get(w, 0) + 1
elif use_w2v_flag == 1:
vocab = {}
vocab['<eos>'] = 0 # EOS
vocab['<unk>'] = 1 # EOS
doc_counts = {}
# w2v vocab:
from gensim.models.keyedvectors import KeyedVectors
w2v_model = './GoogleNews-vectors-negative300.bin'
w2v = KeyedVectors.load_word2vec_format(w2v_model, binary=True)
if min_count == -1:
for w in w2v.vocab.keys():
if lower:
w = w.lower()
if w not in vocab:
vocab[w] = len(vocab)
train_set = train_x_raw
if min_count == -2:
train_set = train_x_raw + dev_x_raw + test_x_raw
for words in train_set:
for w in words:
if lower:
w = w.lower()
if w not in vocab:
if min_count >= 0 or min_count == -2:
vocab[w] = len(vocab)
doc_counts[w] = doc_counts.get(w, 0) + 1
else:
vocab = {}
vocab['<eos>'] = 0 # EOS
vocab['<unk>'] = 1 # EOS
word_cnt = {}
train_set = train_x_raw
for words in train_set:
for w in words:
if lower:
w = w.lower()
word_cnt[w] = word_cnt.get(w, 0) + 1
doc_counts = {}
for words in train_set:
doc_seen = set()
for w in words:
if lower:
w = w.lower()
if w not in doc_seen:
doc_counts[w] = doc_counts.get(w, 0) + 1
doc_seen.add(w)
for words in train_set:
for w in words:
if lower:
w = w.lower()
if w not in vocab and doc_counts[w] > min_count:
vocab[w] = len(vocab)
print('vocab:{}'.format(len(vocab)))
train_x, train_x_len, _ = convert_to_vocab_id(vocab, train_x_raw, [], ignore_unk=ignore_unk, ign_eos=ign_eos)
dev_x, dev_x_len, _ = convert_to_vocab_id(vocab, dev_x_raw, [], ignore_unk=ignore_unk, ign_eos=ign_eos)
test_x, test_x_len, _ = convert_to_vocab_id(vocab, test_x_raw, [], ignore_unk=ignore_unk, ign_eos=ign_eos)
dataset = (train_x, train_x_len, train_y,
dev_x, dev_x_len, dev_y,
test_x, test_x_len, test_y)
lm_train_dataset = np.concatenate(train_x, axis=0).astype(np.int32)
lm_dev_dataset = np.concatenate(dev_x, axis=0).astype(np.int32)
lm_test_dataset = np.concatenate(test_x, axis=0).astype(np.int32)
lm_dataset = (lm_train_dataset, lm_dev_dataset, lm_test_dataset)
if use_semi_data:
lm_dataset = (train_x, train_x_len)
return vocab, doc_counts, dataset, lm_dataset, w2v