forked from schollz/find
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRF.py
90 lines (81 loc) · 2.47 KB
/
RF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import json
import os
import pickle
import sklearn
import random
import numpy
import copy
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_extraction import DictVectorizer
from sklearn.pipeline import make_pipeline
from random import shuffle
__author__ = "Huy Tu"
__email__ = "[email protected]"
__githubID__ = "HuyTu7"
#random.seed(123)
class RF(object):
def __init__(self):
self.size = 0
self.data = []
self.trainX = numpy.array([])
self.trainY = []
self.testX = numpy.array([])
self.testY = []
self.macs = set()
self.locations = set()
def get_data(self, fname):
item = {}
with open(fname, 'r') as f_in:
for line in f_in:
signal_data = json.loads(line)
item["wifi-fingerprint"] = signal_data["wifi-fingerprint"]
item["location"] = signal_data["location"]
self.locations.add(signal_data["location"])
self.data.append(copy.deepcopy(item))
for signal in signal_data["wifi-fingerprint"]:
self.macs.add(signal["mac"])
self.size = len(self.data)
self.macs = list(self.macs)
self.locations = list(self.locations)
return self.data
def splitDataset(self, dataset, splitRatio):
trainSize = int(len(dataset)*splitRatio)
self.trainX.shape=(0, len(self.macs))
self.testX.shape=(0, len(self.macs))
index = 0
xs = [i for i in range(len(dataset))]
shuffle(xs)
while index < len(xs):
item = numpy.zeros(len(self.macs))
for signal in dataset[xs[index]]['wifi-fingerprint']:
item[self.macs.index(signal['mac'])] = signal['rssi']
if index < trainSize:
self.trainX = numpy.concatenate((self.trainX, [item]),axis=0)
self.trainY.append(self.locations.index(dataset[xs[index]]["location"]))
else:
self.testX = numpy.concatenate((self.testX, [item]),axis=0)
self.testY.append(self.locations.index(dataset[xs[index]]["location"]))
index += 1
'''def makeMatrix(self, dataset, index):
item = []
dataT = dataset[index]
dataTest = dataT["wifi-fingerprint"]
value = -1
for i in range(len(self.macs)):
for j in range(len(dataTest)):
if self.macs[i] == dataTest[j]["mac"]:
value = dataTest[j]["rssi"]
break
else:
value = 0
item.append(value)
return item '''
def randomFC(self):
clf = RandomForestClassifier(n_estimators=500, n_jobs = -1)
clf.fit(self.trainX, self.trainY)
print(self.locations)
print(clf.score(self.testX, self.testY))
randomF = RF()
data = randomF.get_data("data/hackduke.rf.data")
randomF.splitDataset(data, 0.6)
randomF.randomFC()