forked from sd2001/-le-medicin
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchat.py
60 lines (46 loc) · 1.52 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from flask import Flask,render_template,request
import random
import torch
import json
from model import NeuralNet
from basics import bag_of_words, tokenize, stem
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
with open('intents.json','r') as f:
intents=json.load(f)
FILE="data.pth"
data=torch.load(FILE)
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data['all_words']
tags = data['tags']
model_state = data["model_state"]
model = NeuralNet(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
app = Flask(__name__)
@app.route("/")
def index():
return render_template("index.html") #to send context to html
@app.route("/get")
def get_bot_response():
sentence = request.args.get("msg") #get data from input,we write js to index.html
sentence=tokenize(sentence)
X=bag_of_words(sentence,all_words)
X=X.reshape(1,X.shape[0])
X=torch.from_numpy(X)
output=model(X)
_,predicted=torch.max(output,dim=1)
tag=tags[predicted.item()]
bot="I do not understand..."
probs = torch.softmax(output, dim=1)
prob = probs[0][predicted.item()]
if prob.item() > 0.75:
for intent in intents['intents']:
if tag == intent["tag"]:
bot=random.choice(intent['responses'])
else:
bot="I do not know...try something unique😊"
return bot
if __name__ == "__main__":
app.run(debug = True)