forked from NVIDIA/trt-llm-as-openai-windows
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
217 lines (180 loc) · 7.26 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: MIT
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import argparse
from flask import Flask, Response, request, jsonify
from trt_llama_api import TrtLlmAPI
from utils import messages_to_prompt, completion_to_prompt, ChatMessage, MessageRole, DEFAULT_SYSTEM_PROMPT
# Create an argument parser
parser = argparse.ArgumentParser(description='OpenAI Compatible Server')
# Add arguments
parser.add_argument('--trt_engine_path', type=str, required=True,
help="Path to the TensorRT engine.", default="")
parser.add_argument('--trt_engine_name', type=str, required=True,
help="Name of the TensorRT engine.", default="")
parser.add_argument('--tokenizer_dir_path', type=str, required=True,
help="Directory path for the tokenizer.", default="")
parser.add_argument('--verbose', type=bool, required=False,
help="Enable verbose logging.", default=False)
app = Flask(__name__)
slot_id = -1
parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1')
parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081)
parser.add_argument("--max_output_tokens", type=int, help="Maximum output tokens.(default: 2048)", default=2048)
parser.add_argument("--max_input_tokens", type=int, help="Maximum input tokens.(default: 2048)", default=2048)
parser.add_argument("--no_system_prompt", type=bool, help="Skip implicit top system prompt.", default=False)
# Parse the arguments
args = parser.parse_args()
def is_present(json, key):
try:
buf = json[key]
except KeyError:
return False
if json[key] == None:
return False
return True
# Use the provided arguments
trt_engine_path = args.trt_engine_path
trt_engine_name = args.trt_engine_name
tokenizer_dir_path = args.tokenizer_dir_path
verbose = args.verbose
host = args.host
port = args.port
no_system_prompt = args.no_system_prompt
# create trt_llm engine object
llm = TrtLlmAPI(
model_path=trt_engine_path,
engine_name=trt_engine_name,
tokenizer_dir=tokenizer_dir_path,
temperature=0.1,
max_new_tokens=args.max_output_tokens,
context_window=args.max_input_tokens,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=False
)
@app.route('/models/Llama2', methods=['POST', 'GET'])
@app.route('/v1/models/Llama2', methods=['POST', 'GET'])
def models():
resData = {
"id": "Llama2",
"object": "model",
"created": 1675232119,
"owned_by": "Meta"
}
return jsonify(resData)
@app.route('/models', methods=['POST', 'GET'])
@app.route('/v1/models', methods=['POST', 'GET'])
def modelsLlaMA():
resData = {
"object": "list",
"data": [
{
"id": "Llama2",
"object": "model",
"created": 1675232119,
"owned_by": "Meta"
},
],
}
return jsonify(resData)
@app.route('/chat/completions', methods=['POST'])
@app.route('/v1/chat/completions', methods=['POST'])
def chat_completions():
assert request.headers.get('Content-Type') == 'application/json'
body = request.get_json()
stream = False
temperature = 1.0
if (is_present(body, "stream")):
stream = body["stream"]
if (is_present(body, "temperature")):
temperature = body["temperature"]
formatted = False
if verbose:
print("/chat/completions called with stream=" + str(stream))
prompt = ""
if "messages" in body:
messages = []
for item in body["messages"]:
chat = ChatMessage()
if "role" in item:
if item["role"] == 'system':
chat.role = MessageRole.SYSTEM
elif item["role"] == 'user':
chat.role = MessageRole.USER
elif item["role"] == 'assistant':
chat.role = MessageRole.ASSISTANT
elif item["role"] == 'function':
chat.role = MessageRole.FUNCTION
else:
print("Missing handling role in message:" + item["role"])
else:
print("Missing role in message")
chat.content = item["content"]
messages.append(chat)
system_prompt = ""
if not no_system_prompt:
system_prompt = DEFAULT_SYSTEM_PROMPT
prompt = messages_to_prompt(messages, system_prompt)
formatted = True
elif "prompt" in body:
prompt = body["prompt"]
if verbose:
print("INPUT SIZE: " + str(len(prompt)))
print("INPUT: " + prompt)
if not stream:
return llm.complete_common(prompt, True, temperature=temperature, formatted=formatted)
else:
return llm.stream_complete_common(prompt, True, temperature=temperature, formatted=formatted)
@app.route('/completions', methods=['POST'])
@app.route('/v1/completions', methods=['POST'])
def completion():
assert request.headers.get('Content-Type') == 'application/json'
stream = False
temperature = 1.0
body = request.get_json()
if (is_present(body, "stream")):
stream = body["stream"]
if (is_present(body, "temperature")):
temperature = body["temperature"]
stop_strings = []
if is_present(body, "stop"):
stop_strings = body["stop"]
if verbose:
print("/completions called with stream=" + str(stream))
prompt = ""
if "prompt" in body:
prompt = body["prompt"]
f = open("prompts.txt", "a")
f.write("\n---------\n")
if stream:
f.write("Completion Input stream:" + prompt)
else:
f.write("Completion Input:" + prompt)
f.close()
if not no_system_prompt:
prompt = completion_to_prompt(prompt)
formatted = True
if not stream:
return llm.complete_common(prompt, False, temperature=temperature, formatted=formatted, stop_strings=stop_strings)
else:
return llm.stream_complete_common(prompt, False, temperature=temperature, formatted=formatted, stop_strings=stop_strings)
if __name__ == '__main__':
app.run(host, port=port, debug=True, use_reloader=False, threaded=False)