-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathelmlrff_sequential.m
60 lines (54 loc) · 2.13 KB
/
elmlrff_sequential.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function [ net ] = elmlrff_sequential( net, x )
%ELMLRFF_SEQUENTIAL ELM-LRF forward in sequential
% see './doc/model_sequential.png'
%==========================================================================
% Developed based on "DeepLearnToolbox" of rasmusbergpalm on GitHub
% https://github.com/rasmusbergpalm/DeepLearnToolbox
%
%==========================================================================
% ---------<LiuZhi>
% ---------<Xidian University>
% ---------<[email protected]>
% ---------<2015/11/24>
%==========================================================================
%
numLayers = numel(net.layers);
[~,~,~,inputmaps] = size(x);% H-by-W-nImages-by-nChannel
for i = 1:inputmaps
net.layers{1}.f{i} = x(:,:,:,i);% f: feature
end
for l = 2:numLayers % for each layer
if strcmp(net.layers{l}.type, 'c')
K = net.layers{l}.outputmaps;
for j = 1 : K % for each output map
% create temp output map
z = 0;
for i = 1 : inputmaps % for each input map
% convolve with corresponding kernel and add to temp output map
z = z + convn(net.layers{l - 1}.f{i}, net.layers{l}.a{i}{j}, 'valid');
end
% elm-lrf no bias no activation function
net.layers{l}.f{j} = z;
end
% set number of input maps to this layers number of outputmaps
inputmaps = K;
elseif strcmp(net.layers{l}.type, 's')
% downsample
for j = 1 : inputmaps
e = fix(net.layers{l}.scale/2);
% pad 0 and square compute h
z = convn(padarray(net.layers{l-1}.f{j}, [e, e]).^2, ones(net.layers{l}.scale), 'valid'); % !! replace with variable
net.layers{l}.f{j} = sqrt(z);
end
end
end
% concatenate all end layer feature maps into vector
net.h = [];
for j = 1 : numel(net.layers{end}.f)
sa = size(net.layers{end}.f{j});
net.h = [net.h; reshape(net.layers{end}.f{j}, sa(1) * sa(2), sa(3))];
end
% % feedforward into output perceptrons
% net.o = sigm(net.ffW * net.fv + repmat(net.ffb, 1, size(net.fv, 2)));
net.h = net.h';
end