-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
85 lines (75 loc) · 2.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import time
import streamlit as st
from interface import (
components,
feature_selection,
)
from data_tools import (
st_dataset_selector,
load_dataset,
time_it,
)
# Wrap methods with timer:
load_dataset = time_it(
lambda ret: "Loading dataset ({} docs)".format((len(ret[0]))),
load_dataset,
)
def feature_selection_page():
###############
# Application Header and data loading
###############
st.header("Data Exploration")
docs_limit = st.number_input(
"Max limit of docs to parse (more than 10000 items will be slow)",
value=1000,
step=50,
)
selected_dataset = st_dataset_selector()
raw_docs, author_map = load_dataset(
selected_dataset, docs_limit, use_predefined_filters=True
)
##############
# Extracts available data columns and creates checkboxes
##############
st.header("Experiment Setup")
(
doc_types,
features,
derived_features,
included_languages,
years_since_publication_limit,
selected_field_of_study,
) = feature_selection.data_selection(raw_docs)
st.subheader("Part 3: Compile Dataset")
filename = st.text_input("Filename (Don't add .csv):", "")
save = components.get_checkboxes(["Save after compiling"])
df = None
if st.button("Create Dataset"):
if save["Save after compiling"]:
if filename == "":
filename = str(int(time.time()))
df = feature_selection.compile_df(
raw_docs,
author_map,
doc_types,
features,
derived_features,
included_languages,
years_since_publication_limit,
selected_field_of_study,
out_file=filename,
)
st.write("Successfully saved dataframe to " + filename)
else:
df = feature_selection.compile_df(
raw_docs,
author_map,
doc_types,
features,
derived_features,
included_languages,
years_since_publication_limit,
selected_field_of_study,
)
if __name__ == "__main__":
feature_selection_page()