-
Notifications
You must be signed in to change notification settings - Fork 3
/
word2vec.c
702 lines (677 loc) · 25.6 KB
/
word2vec.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <pthread.h>
#define MAX_STRING 100
#define EXP_TABLE_SIZE 1000
#define MAX_EXP 6
#define MAX_SENTENCE_LENGTH 1000
#define MAX_CODE_LENGTH 40
const int vocab_hash_size = 30000000; // Maximum 30 * 0.7 = 21M words in the vocabulary
typedef float real; // Precision of float numbers
struct vocab_word {
long long cn;
int *point;
char *word, *code, codelen;
};
char train_file[MAX_STRING], output_file[MAX_STRING];
char save_vocab_file[MAX_STRING], read_vocab_file[MAX_STRING];
struct vocab_word *vocab;
int binary = 0, cbow = 1, debug_mode = 2, window = 5, min_count = 5, num_threads = 12, min_reduce = 1;
int *vocab_hash;
long long vocab_max_size = 1000, vocab_size = 0, layer1_size = 100;
long long train_words = 0, word_count_actual = 0, iter = 5, file_size = 0, classes = 0;
real alpha = 0.025, starting_alpha, sample = 1e-3;
real *syn0, *syn1, *syn1neg, *expTable;
clock_t start;
int hs = 0, negative = 5;
const int table_size = 1e8;
int *table;
void InitUnigramTable() {
int a, i;
double train_words_pow = 0;
double d1, power = 0.75;
table = (int *)malloc(table_size * sizeof(int));
for (a = 0; a < vocab_size; a++) train_words_pow += pow(vocab[a].cn, power);
i = 0;
d1 = pow(vocab[i].cn, power) / train_words_pow;
for (a = 0; a < table_size; a++) {
table[a] = i;
if (a / (double)table_size > d1) {
i++;
d1 += pow(vocab[i].cn, power) / train_words_pow;
}
if (i >= vocab_size) i = vocab_size - 1;
}
}
// Reads a single word from a file, assuming space + tab + EOL to be word boundaries
void ReadWord(char *word, FILE *fin) {
int a = 0, ch;
while (!feof(fin)) {
ch = fgetc(fin);
if (ch == 13) continue;
if ((ch == ' ') || (ch == '\t') || (ch == '\n')) {
if (a > 0) {
if (ch == '\n') ungetc(ch, fin);
break;
}
if (ch == '\n') {
strcpy(word, (char *)"</s>");
return;
} else continue;
}
word[a] = ch;
a++;
if (a >= MAX_STRING - 1) a--; // Truncate too long words
}
word[a] = 0;
}
// Returns hash value of a word
int GetWordHash(char *word) {
unsigned long long a, hash = 0;
for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];
hash = hash % vocab_hash_size;
return hash;
}
// Returns position of a word in the vocabulary; if the word is not found, returns -1
int SearchVocab(char *word) {
unsigned int hash = GetWordHash(word);
while (1) {
if (vocab_hash[hash] == -1) return -1;
if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash];
hash = (hash + 1) % vocab_hash_size;
}
return -1;
}
// Reads a word and returns its index in the vocabulary
int ReadWordIndex(FILE *fin) {
char word[MAX_STRING];
ReadWord(word, fin);
if (feof(fin)) return -1;
return SearchVocab(word);
}
// Adds a word to the vocabulary
int AddWordToVocab(char *word) {
unsigned int hash, length = strlen(word) + 1;
if (length > MAX_STRING) length = MAX_STRING;
vocab[vocab_size].word = (char *)calloc(length, sizeof(char));
strcpy(vocab[vocab_size].word, word);
vocab[vocab_size].cn = 0;
vocab_size++;
// Reallocate memory if needed
if (vocab_size + 2 >= vocab_max_size) {
vocab_max_size += 1000;
vocab = (struct vocab_word *)realloc(vocab, vocab_max_size * sizeof(struct vocab_word));
}
hash = GetWordHash(word);
while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = vocab_size - 1;
return vocab_size - 1;
}
// Used later for sorting by word counts
int VocabCompare(const void *a, const void *b) {
return ((struct vocab_word *)b)->cn - ((struct vocab_word *)a)->cn;
}
// Sorts the vocabulary by frequency using word counts
void SortVocab() {
int a, size;
unsigned int hash;
// Sort the vocabulary and keep </s> at the first position
qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);
for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
size = vocab_size;
train_words = 0;
for (a = 0; a < size; a++) {
// Words occuring less than min_count times will be discarded from the vocab
if ((vocab[a].cn < min_count) && (a != 0)) {
vocab_size--;
free(vocab[a].word);
} else {
// Hash will be re-computed, as after the sorting it is not actual
hash=GetWordHash(vocab[a].word);
while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = a;
train_words += vocab[a].cn;
}
}
vocab = (struct vocab_word *)realloc(vocab, (vocab_size + 1) * sizeof(struct vocab_word));
// Allocate memory for the binary tree construction
for (a = 0; a < vocab_size; a++) {
vocab[a].code = (char *)calloc(MAX_CODE_LENGTH, sizeof(char));
vocab[a].point = (int *)calloc(MAX_CODE_LENGTH, sizeof(int));
}
}
// Reduces the vocabulary by removing infrequent tokens
void ReduceVocab() {
int a, b = 0;
unsigned int hash;
for (a = 0; a < vocab_size; a++) if (vocab[a].cn > min_reduce) {
vocab[b].cn = vocab[a].cn;
vocab[b].word = vocab[a].word;
b++;
} else free(vocab[a].word);
vocab_size = b;
for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
for (a = 0; a < vocab_size; a++) {
// Hash will be re-computed, as it is not actual
hash = GetWordHash(vocab[a].word);
while (vocab_hash[hash] != -1) hash = (hash + 1) % vocab_hash_size;
vocab_hash[hash] = a;
}
fflush(stdout);
min_reduce++;
}
// Create binary Huffman tree using the word counts
// Frequent words will have short uniqe binary codes
void CreateBinaryTree() {
long long a, b, i, min1i, min2i, pos1, pos2, point[MAX_CODE_LENGTH];
char code[MAX_CODE_LENGTH];
long long *count = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
long long *binary = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
long long *parent_node = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
for (a = 0; a < vocab_size; a++) count[a] = vocab[a].cn;
for (a = vocab_size; a < vocab_size * 2; a++) count[a] = 1e15;
pos1 = vocab_size - 1;
pos2 = vocab_size;
// Following algorithm constructs the Huffman tree by adding one node at a time
for (a = 0; a < vocab_size - 1; a++) {
// First, find two smallest nodes 'min1, min2'
if (pos1 >= 0) {
if (count[pos1] < count[pos2]) {
min1i = pos1;
pos1--;
} else {
min1i = pos2;
pos2++;
}
} else {
min1i = pos2;
pos2++;
}
if (pos1 >= 0) {
if (count[pos1] < count[pos2]) {
min2i = pos1;
pos1--;
} else {
min2i = pos2;
pos2++;
}
} else {
min2i = pos2;
pos2++;
}
count[vocab_size + a] = count[min1i] + count[min2i];
parent_node[min1i] = vocab_size + a;
parent_node[min2i] = vocab_size + a;
binary[min2i] = 1;
}
// Now assign binary code to each vocabulary word
for (a = 0; a < vocab_size; a++) {
b = a;
i = 0;
while (1) {
code[i] = binary[b];
point[i] = b;
i++;
b = parent_node[b];
if (b == vocab_size * 2 - 2) break;
}
vocab[a].codelen = i;
vocab[a].point[0] = vocab_size - 2;
for (b = 0; b < i; b++) {
vocab[a].code[i - b - 1] = code[b];
vocab[a].point[i - b] = point[b] - vocab_size;
}
}
free(count);
free(binary);
free(parent_node);
}
void LearnVocabFromTrainFile() {
char word[MAX_STRING];
FILE *fin;
long long a, i;
for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
fin = fopen(train_file, "rb");
if (fin == NULL) {
printf("ERROR: training data file not found!\n");
exit(1);
}
vocab_size = 0;
AddWordToVocab((char *)"</s>");
while (1) {
ReadWord(word, fin);
if (feof(fin)) break;
train_words++;
if ((debug_mode > 1) && (train_words % 100000 == 0)) {
printf("%lldK%c", train_words / 1000, 13);
fflush(stdout);
}
i = SearchVocab(word);
if (i == -1) {
a = AddWordToVocab(word);
vocab[a].cn = 1;
} else vocab[i].cn++;
if (vocab_size > vocab_hash_size * 0.7) ReduceVocab();
}
SortVocab();
if (debug_mode > 0) {
printf("Vocab size: %lld\n", vocab_size);
printf("Words in train file: %lld\n", train_words);
}
file_size = ftell(fin);
fclose(fin);
}
void SaveVocab() {
long long i;
FILE *fo = fopen(save_vocab_file, "wb");
for (i = 0; i < vocab_size; i++) fprintf(fo, "%s %lld\n", vocab[i].word, vocab[i].cn);
fclose(fo);
}
void ReadVocab() {
long long a, i = 0;
char c;
char word[MAX_STRING];
FILE *fin = fopen(read_vocab_file, "rb");
if (fin == NULL) {
printf("Vocabulary file not found\n");
exit(1);
}
for (a = 0; a < vocab_hash_size; a++) vocab_hash[a] = -1;
vocab_size = 0;
while (1) {
ReadWord(word, fin);
if (feof(fin)) break;
a = AddWordToVocab(word);
fscanf(fin, "%lld%c", &vocab[a].cn, &c);
i++;
}
SortVocab();
if (debug_mode > 0) {
printf("Vocab size: %lld\n", vocab_size);
printf("Words in train file: %lld\n", train_words);
}
fin = fopen(train_file, "rb");
if (fin == NULL) {
printf("ERROR: training data file not found!\n");
exit(1);
}
fseek(fin, 0, SEEK_END);
file_size = ftell(fin);
fclose(fin);
}
void InitNet() {
long long a, b;
unsigned long long next_random = 1;
a = posix_memalign((void **)&syn0, 128, (long long)vocab_size * layer1_size * sizeof(real));
if (syn0 == NULL) {printf("Memory allocation failed\n"); exit(1);}
if (hs) {
a = posix_memalign((void **)&syn1, 128, (long long)vocab_size * layer1_size * sizeof(real));
if (syn1 == NULL) {printf("Memory allocation failed\n"); exit(1);}
for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++)
syn1[a * layer1_size + b] = 0;
}
if (negative>0) {
a = posix_memalign((void **)&syn1neg, 128, (long long)vocab_size * layer1_size * sizeof(real));
if (syn1neg == NULL) {printf("Memory allocation failed\n"); exit(1);}
for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++)
syn1neg[a * layer1_size + b] = 0;
}
for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) {
next_random = next_random * (unsigned long long)25214903917 + 11;
syn0[a * layer1_size + b] = (((next_random & 0xFFFF) / (real)65536) - 0.5) / layer1_size;
}
CreateBinaryTree();
}
void *TrainModelThread(void *id) {
long long a, b, d, cw, word, last_word, sentence_length = 0, sentence_position = 0;
long long word_count = 0, last_word_count = 0, sen[MAX_SENTENCE_LENGTH + 1];
long long l1, l2, c, target, label, local_iter = iter;
unsigned long long next_random = (long long)id;
real f, g;
clock_t now;
real *neu1 = (real *)calloc(layer1_size, sizeof(real));
real *neu1e = (real *)calloc(layer1_size, sizeof(real));
FILE *fi = fopen(train_file, "rb");
fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET);
while (1) {
if (word_count - last_word_count > 10000) {
word_count_actual += word_count - last_word_count;
last_word_count = word_count;
if ((debug_mode > 1)) {
now=clock();
printf("%cAlpha: %f Progress: %.2f%% Words/thread/sec: %.2fk ", 13, alpha,
word_count_actual / (real)(iter * train_words + 1) * 100,
word_count_actual / ((real)(now - start + 1) / (real)CLOCKS_PER_SEC * 1000));
fflush(stdout);
}
alpha = starting_alpha * (1 - word_count_actual / (real)(iter * train_words + 1));
if (alpha < starting_alpha * 0.0001) alpha = starting_alpha * 0.0001;
}
if (sentence_length == 0) {
while (1) {
word = ReadWordIndex(fi);
if (feof(fi)) break;
if (word == -1) continue;
word_count++;
if (word == 0) break;
// The subsampling randomly discards frequent words while keeping the ranking same
if (sample > 0) {
real ran = (sqrt(vocab[word].cn / (sample * train_words)) + 1) * (sample * train_words) / vocab[word].cn;
next_random = next_random * (unsigned long long)25214903917 + 11;
if (ran < (next_random & 0xFFFF) / (real)65536) continue;
}
sen[sentence_length] = word;
sentence_length++;
if (sentence_length >= MAX_SENTENCE_LENGTH) break;
}
sentence_position = 0;
}
if (feof(fi) || (word_count > train_words / num_threads)) {
word_count_actual += word_count - last_word_count;
local_iter--;
if (local_iter == 0) break;
word_count = 0;
last_word_count = 0;
sentence_length = 0;
fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET);
continue;
}
word = sen[sentence_position];
if (word == -1) continue;
for (c = 0; c < layer1_size; c++) neu1[c] = 0;
for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
next_random = next_random * (unsigned long long)25214903917 + 11;
b = next_random % window;
if (cbow) { //train the cbow architecture
// in -> hidden
cw = 0;
for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
c = sentence_position - window + a;
if (c < 0) continue;
if (c >= sentence_length) continue;
last_word = sen[c];
if (last_word == -1) continue;
for (c = 0; c < layer1_size; c++) neu1[c] += syn0[c + last_word * layer1_size];
cw++;
}
if (cw) {
for (c = 0; c < layer1_size; c++) neu1[c] /= cw;
if (hs) for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * layer1_size;
// Propagate hidden -> output
for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1[c + l2];
if (f <= -MAX_EXP) continue;
else if (f >= MAX_EXP) continue;
else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
// Learn weights hidden -> output
for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c];
}
// NEGATIVE SAMPLING
if (negative > 0) for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random * (unsigned long long)25214903917 + 11;
target = table[(next_random >> 16) % table_size];
if (target == 0) target = next_random % (vocab_size - 1) + 1;
if (target == word) continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1neg[c + l2];
if (f > MAX_EXP) g = (label - 1) * alpha;
else if (f < -MAX_EXP) g = (label - 0) * alpha;
else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * neu1[c];
}
// hidden -> in
for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
c = sentence_position - window + a;
if (c < 0) continue;
if (c >= sentence_length) continue;
last_word = sen[c];
if (last_word == -1) continue;
for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c];
}
}
} else { //train skip-gram
for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
c = sentence_position - window + a;
if (c < 0) continue;
if (c >= sentence_length) continue;
last_word = sen[c];
if (last_word == -1) continue;
l1 = last_word * layer1_size;
for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
// HIERARCHICAL SOFTMAX
if (hs) for (d = 0; d < vocab[word].codelen; d++) {
f = 0;
l2 = vocab[word].point[d] * layer1_size;
// Propagate hidden -> output
for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1[c + l2];
if (f <= -MAX_EXP) continue;
else if (f >= MAX_EXP) continue;
else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];
// 'g' is the gradient multiplied by the learning rate
g = (1 - vocab[word].code[d] - f) * alpha;
// Propagate errors output -> hidden
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
// Learn weights hidden -> output
for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * syn0[c + l1];
}
// NEGATIVE SAMPLING
if (negative > 0) for (d = 0; d < negative + 1; d++) {
if (d == 0) {
target = word;
label = 1;
} else {
next_random = next_random * (unsigned long long)25214903917 + 11;
target = table[(next_random >> 16) % table_size];
if (target == 0) target = next_random % (vocab_size - 1) + 1;
if (target == word) continue;
label = 0;
}
l2 = target * layer1_size;
f = 0;
for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1neg[c + l2];
if (f > MAX_EXP) g = (label - 1) * alpha;
else if (f < -MAX_EXP) g = (label - 0) * alpha;
else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;
for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * syn0[c + l1];
}
// Learn weights input -> hidden
for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c];
}
}
sentence_position++;
if (sentence_position >= sentence_length) {
sentence_length = 0;
continue;
}
}
fclose(fi);
free(neu1);
free(neu1e);
pthread_exit(NULL);
}
void TrainModel() {
long a, b, c, d;
FILE *fo;
pthread_t *pt = (pthread_t *)malloc(num_threads * sizeof(pthread_t));
printf("Starting training using file %s\n", train_file);
starting_alpha = alpha;
if (read_vocab_file[0] != 0) ReadVocab(); else LearnVocabFromTrainFile();
if (save_vocab_file[0] != 0) SaveVocab();
if (output_file[0] == 0) return;
InitNet();
if (negative > 0) InitUnigramTable();
start = clock();
for (a = 0; a < num_threads; a++) pthread_create(&pt[a], NULL, TrainModelThread, (void *)a);
for (a = 0; a < num_threads; a++) pthread_join(pt[a], NULL);
fo = fopen(output_file, "wb");
if (classes == 0) {
// Save the word vectors
fprintf(fo, "%lld %lld\n", vocab_size, layer1_size);
for (a = 0; a < vocab_size; a++) {
fprintf(fo, "%s ", vocab[a].word);
if (binary) for (b = 0; b < layer1_size; b++) fwrite(&syn0[a * layer1_size + b], sizeof(real), 1, fo);
else for (b = 0; b < layer1_size; b++) fprintf(fo, "%lf ", syn0[a * layer1_size + b]);
fprintf(fo, "\n");
}
} else {
// Run K-means on the word vectors
int clcn = classes, iter = 10, closeid;
int *centcn = (int *)malloc(classes * sizeof(int));
int *cl = (int *)calloc(vocab_size, sizeof(int));
real closev, x;
real *cent = (real *)calloc(classes * layer1_size, sizeof(real));
for (a = 0; a < vocab_size; a++) cl[a] = a % clcn;
for (a = 0; a < iter; a++) {
for (b = 0; b < clcn * layer1_size; b++) cent[b] = 0;
for (b = 0; b < clcn; b++) centcn[b] = 1;
for (c = 0; c < vocab_size; c++) {
for (d = 0; d < layer1_size; d++) cent[layer1_size * cl[c] + d] += syn0[c * layer1_size + d];
centcn[cl[c]]++;
}
for (b = 0; b < clcn; b++) {
closev = 0;
for (c = 0; c < layer1_size; c++) {
cent[layer1_size * b + c] /= centcn[b];
closev += cent[layer1_size * b + c] * cent[layer1_size * b + c];
}
closev = sqrt(closev);
for (c = 0; c < layer1_size; c++) cent[layer1_size * b + c] /= closev;
}
for (c = 0; c < vocab_size; c++) {
closev = -10;
closeid = 0;
for (d = 0; d < clcn; d++) {
x = 0;
for (b = 0; b < layer1_size; b++) x += cent[layer1_size * d + b] * syn0[c * layer1_size + b];
if (x > closev) {
closev = x;
closeid = d;
}
}
cl[c] = closeid;
}
}
// Save the K-means classes
for (a = 0; a < vocab_size; a++) fprintf(fo, "%s %d\n", vocab[a].word, cl[a]);
free(centcn);
free(cent);
free(cl);
}
fclose(fo);
}
int ArgPos(char *str, int argc, char **argv) {
int a;
for (a = 1; a < argc; a++) if (!strcmp(str, argv[a])) {
if (a == argc - 1) {
printf("Argument missing for %s\n", str);
exit(1);
}
return a;
}
return -1;
}
int main(int argc, char **argv) {
int i;
if (argc == 1) {
printf("WORD VECTOR estimation toolkit v 0.1c\n\n");
printf("Options:\n");
printf("Parameters for training:\n");
printf("\t-train <file>\n");
printf("\t\tUse text data from <file> to train the model\n");
printf("\t-output <file>\n");
printf("\t\tUse <file> to save the resulting word vectors / word clusters\n");
printf("\t-size <int>\n");
printf("\t\tSet size of word vectors; default is 100\n");
printf("\t-window <int>\n");
printf("\t\tSet max skip length between words; default is 5\n");
printf("\t-sample <float>\n");
printf("\t\tSet threshold for occurrence of words. Those that appear with higher frequency in the training data\n");
printf("\t\twill be randomly down-sampled; default is 1e-3, useful range is (0, 1e-5)\n");
printf("\t-hs <int>\n");
printf("\t\tUse Hierarchical Softmax; default is 0 (not used)\n");
printf("\t-negative <int>\n");
printf("\t\tNumber of negative examples; default is 5, common values are 3 - 10 (0 = not used)\n");
printf("\t-threads <int>\n");
printf("\t\tUse <int> threads (default 12)\n");
printf("\t-iter <int>\n");
printf("\t\tRun more training iterations (default 5)\n");
printf("\t-min-count <int>\n");
printf("\t\tThis will discard words that appear less than <int> times; default is 5\n");
printf("\t-alpha <float>\n");
printf("\t\tSet the starting learning rate; default is 0.025 for skip-gram and 0.05 for CBOW\n");
printf("\t-classes <int>\n");
printf("\t\tOutput word classes rather than word vectors; default number of classes is 0 (vectors are written)\n");
printf("\t-debug <int>\n");
printf("\t\tSet the debug mode (default = 2 = more info during training)\n");
printf("\t-binary <int>\n");
printf("\t\tSave the resulting vectors in binary moded; default is 0 (off)\n");
printf("\t-save-vocab <file>\n");
printf("\t\tThe vocabulary will be saved to <file>\n");
printf("\t-read-vocab <file>\n");
printf("\t\tThe vocabulary will be read from <file>, not constructed from the training data\n");
printf("\t-cbow <int>\n");
printf("\t\tUse the continuous bag of words model; default is 1 (use 0 for skip-gram model)\n");
printf("\nExamples:\n");
printf("./word2vec -train data.txt -output vec.txt -size 200 -window 5 -sample 1e-4 -negative 5 -hs 0 -binary 0 -cbow 1 -iter 3\n\n");
return 0;
}
output_file[0] = 0;
save_vocab_file[0] = 0;
read_vocab_file[0] = 0;
if ((i = ArgPos((char *)"-size", argc, argv)) > 0) layer1_size = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-train", argc, argv)) > 0) strcpy(train_file, argv[i + 1]);
if ((i = ArgPos((char *)"-save-vocab", argc, argv)) > 0) strcpy(save_vocab_file, argv[i + 1]);
if ((i = ArgPos((char *)"-read-vocab", argc, argv)) > 0) strcpy(read_vocab_file, argv[i + 1]);
if ((i = ArgPos((char *)"-debug", argc, argv)) > 0) debug_mode = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-binary", argc, argv)) > 0) binary = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-cbow", argc, argv)) > 0) cbow = atoi(argv[i + 1]);
if (cbow) alpha = 0.05;
if ((i = ArgPos((char *)"-alpha", argc, argv)) > 0) alpha = atof(argv[i + 1]);
if ((i = ArgPos((char *)"-output", argc, argv)) > 0) strcpy(output_file, argv[i + 1]);
if ((i = ArgPos((char *)"-window", argc, argv)) > 0) window = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-sample", argc, argv)) > 0) sample = atof(argv[i + 1]);
if ((i = ArgPos((char *)"-hs", argc, argv)) > 0) hs = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-negative", argc, argv)) > 0) negative = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-threads", argc, argv)) > 0) num_threads = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-iter", argc, argv)) > 0) iter = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-min-count", argc, argv)) > 0) min_count = atoi(argv[i + 1]);
if ((i = ArgPos((char *)"-classes", argc, argv)) > 0) classes = atoi(argv[i + 1]);
vocab = (struct vocab_word *)calloc(vocab_max_size, sizeof(struct vocab_word));
vocab_hash = (int *)calloc(vocab_hash_size, sizeof(int));
expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));
for (i = 0; i < EXP_TABLE_SIZE; i++) {
expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
expTable[i] = expTable[i] / (expTable[i] + 1); // Precompute f(x) = x / (x + 1)
}
TrainModel();
return 0;
}