forked from seongjunyun/Graph_Transformer_Networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
151 lines (101 loc) · 3.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from __future__ import division
import torch
def accuracy(pred, target):
r"""Computes the accuracy of correct predictions.
Args:
pred (Tensor): The predictions.
target (Tensor): The targets.
:rtype: int
"""
return (pred == target).sum().item() / target.numel()
def true_positive(pred, target, num_classes):
r"""Computes the number of true positive predictions.
Args:
pred (Tensor): The predictions.
target (Tensor): The targets.
num_classes (int): The number of classes.
:rtype: :class:`LongTensor`
"""
out = []
for i in range(num_classes):
out.append(((pred == i) & (target == i)).sum())
return torch.tensor(out)
def true_negative(pred, target, num_classes):
r"""Computes the number of true negative predictions.
Args:
pred (Tensor): The predictions.
target (Tensor): The targets.
num_classes (int): The number of classes.
:rtype: :class:`LongTensor`
"""
out = []
for i in range(num_classes):
out.append(((pred != i) & (target != i)).sum())
return torch.tensor(out)
def false_positive(pred, target, num_classes):
r"""Computes the number of false positive predictions.
Args:
pred (Tensor): The predictions.
target (Tensor): The targets.
num_classes (int): The number of classes.
:rtype: :class:`LongTensor`
"""
out = []
for i in range(num_classes):
out.append(((pred == i) & (target != i)).sum())
return torch.tensor(out)
def false_negative(pred, target, num_classes):
r"""Computes the number of false negative predictions.
Args:
pred (Tensor): The predictions.
target (Tensor): The targets.
num_classes (int): The number of classes.
:rtype: :class:`LongTensor`
"""
out = []
for i in range(num_classes):
out.append(((pred != i) & (target == i)).sum())
return torch.tensor(out)
def precision(pred, target, num_classes):
r"""Computes the precision:
:math:`\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}`.
Args:
pred (Tensor): The predictions.
target (Tensor): The targets.
num_classes (int): The number of classes.
:rtype: :class:`Tensor`
"""
tp = true_positive(pred, target, num_classes).to(torch.float)
fp = false_positive(pred, target, num_classes).to(torch.float)
out = tp / (tp + fp)
out[torch.isnan(out)] = 0
return out
def recall(pred, target, num_classes):
r"""Computes the recall:
:math:`\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}}`.
Args:
pred (Tensor): The predictions.
target (Tensor): The targets.
num_classes (int): The number of classes.
:rtype: :class:`Tensor`
"""
tp = true_positive(pred, target, num_classes).to(torch.float)
fn = false_negative(pred, target, num_classes).to(torch.float)
out = tp / (tp + fn)
out[torch.isnan(out)] = 0
return out
def f1_score(pred, target, num_classes):
r"""Computes the :math:`F_1` score:
:math:`2 \cdot \frac{\mathrm{precision} \cdot \mathrm{recall}}
{\mathrm{precision}+\mathrm{recall}}`.
Args:
pred (Tensor): The predictions.
target (Tensor): The targets.
num_classes (int): The number of classes.
:rtype: :class:`Tensor`
"""
prec = precision(pred, target, num_classes)
rec = recall(pred, target, num_classes)
score = 2 * (prec * rec) / (prec + rec)
score[torch.isnan(score)] = 0
return score