-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathE.cpp
236 lines (182 loc) · 6.23 KB
/
E.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include <bits/stdc++.h>
using namespace std;
#define nl '\n'
template<const int &MOD>
struct _m_int {
int val;
_m_int(int64_t v = 0) {
if (v < 0) v = v % MOD + MOD;
if (v >= MOD) v %= MOD;
val = int(v);
}
_m_int(uint64_t v) {
if (v >= MOD) v %= MOD;
val = int(v);
}
_m_int(int v) : _m_int(int64_t(v)) {}
_m_int(unsigned v) : _m_int(uint64_t(v)) {}
explicit operator int() const { return val; }
explicit operator unsigned() const { return val; }
explicit operator int64_t() const { return val; }
explicit operator uint64_t() const { return val; }
explicit operator double() const { return val; }
explicit operator long double() const { return val; }
_m_int& operator+=(const _m_int &other) {
val -= MOD - other.val;
if (val < 0) val += MOD;
return *this;
}
_m_int& operator-=(const _m_int &other) {
val -= other.val;
if (val < 0) val += MOD;
return *this;
}
static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
return unsigned(x % m);
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int.
unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (m));
return rem;
}
_m_int& operator*=(const _m_int &other) {
val = fast_mod(uint64_t(val) * other.val);
return *this;
}
_m_int& operator/=(const _m_int &other) {
return *this *= other.inv();
}
friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; }
friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; }
friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; }
friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; }
_m_int& operator++() {
val = val == MOD - 1 ? 0 : val + 1;
return *this;
}
_m_int& operator--() {
val = val == 0 ? MOD - 1 : val - 1;
return *this;
}
_m_int operator++(int) { _m_int before = *this; ++*this; return before; }
_m_int operator--(int) { _m_int before = *this; --*this; return before; }
_m_int operator-() const {
return val == 0 ? 0 : MOD - val;
}
friend bool operator==(const _m_int &a, const _m_int &b) { return a.val == b.val; }
friend bool operator!=(const _m_int &a, const _m_int &b) { return a.val != b.val; }
friend bool operator<(const _m_int &a, const _m_int &b) { return a.val < b.val; }
friend bool operator>(const _m_int &a, const _m_int &b) { return a.val > b.val; }
friend bool operator<=(const _m_int &a, const _m_int &b) { return a.val <= b.val; }
friend bool operator>=(const _m_int &a, const _m_int &b) { return a.val >= b.val; }
static const int SAVE_INV = int(1e6) + 5;
static _m_int save_inv[SAVE_INV];
static void prepare_inv() {
// Make sure MOD is prime, which is necessary for the inverse algorithm below.
for (int64_t p = 2; p * p <= MOD; p += p % 2 + 1)
assert(MOD % p != 0);
save_inv[0] = 0;
save_inv[1] = 1;
for (int i = 2; i < SAVE_INV; i++)
save_inv[i] = save_inv[MOD % i] * (MOD - MOD / i);
}
_m_int inv() const {
if (save_inv[1] == 0)
prepare_inv();
if (val < SAVE_INV)
return save_inv[val];
_m_int product = 1;
int v = val;
while (v >= SAVE_INV) {
product *= MOD - MOD / v;
v = MOD % v;
}
return product * save_inv[v];
}
_m_int pow(int64_t p) const {
if (p < 0)
return inv().pow(-p);
_m_int a = *this, result = 1;
while (p > 0) {
if (p & 1)
result *= a;
p >>= 1;
if (p > 0)
a *= a;
}
return result;
}
friend ostream& operator<<(ostream &os, const _m_int &m) {
return os << m.val;
}
};
template<const int &MOD> _m_int<MOD> _m_int<MOD>::save_inv[_m_int<MOD>::SAVE_INV];
extern const int MOD = int(1e9) + 7;
using mod_int = _m_int<MOD>;
vector<mod_int> _factorial = {1, 1}, _inv_factorial = {1, 1};
void prepare_factorials(int64_t maximum) {
static int prepared_maximum = 1;
if (maximum <= prepared_maximum)
return;
// Prevent increasing maximum by only 1 each time.
maximum += maximum / 16;
_factorial.resize(maximum + 1);
_inv_factorial.resize(maximum + 1);
for (int i = prepared_maximum + 1; i <= maximum; i++) {
_factorial[i] = i * _factorial[i - 1];
_inv_factorial[i] = _inv_factorial[i - 1] / i;
}
prepared_maximum = int(maximum);
}
mod_int factorial(int n) {
if (n < 0) return 0;
prepare_factorials(n);
return _factorial[n];
}
mod_int inv_factorial(int n) {
if (n < 0) return 0;
prepare_factorials(n);
return _inv_factorial[n];
}
mod_int choose(int64_t n, int64_t r) {
if (r < 0 || r > n) return 0;
prepare_factorials(n);
return _factorial[n] * _inv_factorial[r] * _inv_factorial[n - r];
}
mod_int permute(int64_t n, int64_t r) {
if (r < 0 || r > n) return 0;
prepare_factorials(n);
return _factorial[n] * _inv_factorial[n - r];
}
mod_int inv_choose(int64_t n, int64_t r) {
assert(0 <= r && r <= n);
prepare_factorials(n);
return _inv_factorial[n] * _factorial[r] * _factorial[n - r];
}
mod_int inv_permute(int64_t n, int64_t r) {
assert(0 <= r && r <= n);
prepare_factorials(n);
return _inv_factorial[n] * _factorial[n - r];
}
void run_cases() {
int64_t N, K;
cin >> N >> K;
mod_int expected_value = 1;
for(int64_t M = 1; M <= N; M++) {
expected_value += choose(N - (M - 1) * (K - 1), M) / choose(N, M);
}
cout << expected_value << '\n';
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(nullptr);
int tests = 1;
cin >> tests;
for(int test = 1;test <= tests;test++) {
run_cases();
}
}