-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathF.cpp
414 lines (329 loc) · 11.5 KB
/
F.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#include <bits/stdc++.h>
using namespace std;
#define nl '\n'
template<typename T, bool maximum_mode = false>
struct RMQ {
int n = 0;
vector<T> values;
vector<vector<int>> range_low;
RMQ(const vector<T> &_values = {}) {
if (!_values.empty())
build(_values);
}
static int highest_bit(int x) {
return x == 0 ? -1 : 31 - __builtin_clz(x);
}
// Note: when `values[a] == values[b]`, returns b.
int better_index(int a, int b) const {
return (maximum_mode ? values[b] < values[a] : values[a] < values[b]) ? a : b;
}
void build(const vector<T> &_values) {
values = _values;
n = int(values.size());
int levels = highest_bit(n) + 1;
range_low.resize(levels);
for (int k = 0; k < levels; k++)
range_low[k].resize(n - (1 << k) + 1);
for (int i = 0; i < n; i++)
range_low[0][i] = i;
for (int k = 1; k < levels; k++)
for (int i = 0; i <= n - (1 << k); i++)
range_low[k][i] = better_index(range_low[k - 1][i], range_low[k - 1][i + (1 << (k - 1))]);
}
// Note: breaks ties by choosing the largest index.
int query_index(int a, int b) const {
assert(0 <= a && a < b && b <= n);
int level = highest_bit(b - a);
return better_index(range_low[level][a], range_low[level][b - (1 << level)]);
}
T query_value(int a, int b) const {
return values[query_index(a, b)];
}
};
struct LCA {
int n = 0;
vector<vector<int>> adj;
vector<int> parent, depth, subtree_size;
vector<int> euler, first_occurrence;
vector<int> tour_start, tour_end, postorder;
vector<int> tour_list, rev_tour_list;
vector<int> heavy_root;
RMQ<int> rmq;
bool built;
LCA(int _n = 0) {
init(_n);
}
// Warning: this does not call build().
LCA(const vector<vector<int>> &_adj) {
init(_adj);
}
void init(int _n) {
n = _n;
adj.assign(n, {});
parent.resize(n);
depth.resize(n);
subtree_size.resize(n);
first_occurrence.resize(n);
tour_start.resize(n);
tour_end.resize(n);
postorder.resize(n);
tour_list.resize(n);
heavy_root.resize(n);
built = false;
}
// Warning: this does not call build().
void init(const vector<vector<int>> &_adj) {
init(int(_adj.size()));
adj = _adj;
}
void add_edge(int a, int b) {
adj[a].push_back(b);
adj[b].push_back(a);
}
int degree(int v) const {
return int(adj[v].size()) + (built && parent[v] >= 0);
}
void dfs(int node, int par) {
parent[node] = par;
depth[node] = par < 0 ? 0 : depth[par] + 1;
subtree_size[node] = 1;
// Erase the edge to parent.
adj[node].erase(remove(adj[node].begin(), adj[node].end(), par), adj[node].end());
for (int child : adj[node]) {
dfs(child, node);
subtree_size[node] += subtree_size[child];
}
// Heavy-light subtree reordering.
sort(adj[node].begin(), adj[node].end(), [&](int a, int b) {
return subtree_size[a] > subtree_size[b];
});
}
int tour, post_tour;
void tour_dfs(int node, bool heavy) {
heavy_root[node] = heavy ? heavy_root[parent[node]] : node;
first_occurrence[node] = int(euler.size());
euler.push_back(node);
tour_list[tour] = node;
tour_start[node] = tour++;
bool heavy_child = true;
for (int child : adj[node]) {
tour_dfs(child, heavy_child);
euler.push_back(node);
heavy_child = false;
}
tour_end[node] = tour;
postorder[node] = post_tour++;
}
void build(int root = -1, bool build_rmq = true) {
parent.assign(n, -1);
if (0 <= root && root < n)
dfs(root, -1);
for (int i = 0; i < n; i++)
if (i != root && parent[i] < 0)
dfs(i, -1);
tour = post_tour = 0;
euler.clear();
euler.reserve(2 * n);
for (int i = 0; i < n; i++)
if (parent[i] < 0) {
tour_dfs(i, false);
// Add a -1 in between connected components to help us detect when nodes aren't connected.
euler.push_back(-1);
}
rev_tour_list = tour_list;
reverse(rev_tour_list.begin(), rev_tour_list.end());
assert(int(euler.size()) == 2 * n);
vector<int> euler_depths;
euler_depths.reserve(euler.size());
for (int node : euler)
euler_depths.push_back(node < 0 ? node : depth[node]);
if (build_rmq)
rmq.build(euler_depths);
built = true;
}
pair<int, array<int, 2>> get_diameter() const {
assert(built);
// We find the maximum of depth[u] - 2 * depth[x] + depth[v] where u, x, v occur in order in the Euler tour.
pair<int, int> u_max = {-1, -1};
pair<int, int> ux_max = {-1, -1};
pair<int, array<int, 2>> uxv_max = {-1, {-1, -1}};
for (int node : euler) {
if (node < 0) break;
u_max = max(u_max, {depth[node], node});
ux_max = max(ux_max, {u_max.first - 2 * depth[node], u_max.second});
uxv_max = max(uxv_max, {ux_max.first + depth[node], {ux_max.second, node}});
}
return uxv_max;
}
// Note: returns -1 if `a` and `b` aren't connected.
int get_lca(int a, int b) const {
a = first_occurrence[a];
b = first_occurrence[b];
if (a > b)
swap(a, b);
return euler[rmq.query_index(a, b + 1)];
}
bool is_ancestor(int a, int b) const {
return tour_start[a] <= tour_start[b] && tour_start[b] < tour_end[a];
}
bool on_path(int x, int a, int b) const {
return (is_ancestor(x, a) || is_ancestor(x, b)) && is_ancestor(get_lca(a, b), x);
}
int get_dist(int a, int b) const {
return depth[a] + depth[b] - 2 * depth[get_lca(a, b)];
}
// Returns the child of `a` that is an ancestor of `b`. Assumes `a` is a strict ancestor of `b`.
int child_ancestor(int a, int b) const {
assert(a != b);
assert(is_ancestor(a, b));
// Note: this depends on RMQ breaking ties by latest index.
int child = euler[rmq.query_index(first_occurrence[a], first_occurrence[b] + 1) + 1];
assert(parent[child] == a);
assert(is_ancestor(child, b));
return child;
}
int get_kth_ancestor(int a, int k) const {
while (a >= 0) {
int root = heavy_root[a];
if (depth[root] <= depth[a] - k)
return tour_list[tour_start[a] - k];
k -= depth[a] - depth[root] + 1;
a = parent[root];
}
return a;
}
int get_kth_node_on_path(int a, int b, int k) const {
int anc = get_lca(a, b);
int first_half = depth[a] - depth[anc];
int second_half = depth[b] - depth[anc];
assert(0 <= k && k <= first_half + second_half);
if (k < first_half)
return get_kth_ancestor(a, k);
else
return get_kth_ancestor(b, first_half + second_half - k);
}
// Note: this is the LCA of any two nodes out of three when the third node is the root.
// It is also the node with the minimum sum of distances to all three nodes (the centroid of the three nodes).
int get_common_node(int a, int b, int c) const {
// Return the deepest node among lca(a, b), lca(b, c), and lca(c, a).
int x = get_lca(a, b);
int y = get_lca(b, c);
int z = get_lca(c, a);
x = depth[y] > depth[x] ? y : x;
x = depth[z] > depth[x] ? z : x;
return x;
}
// Given a subset of k tree nodes, computes the minimal subtree that contains all the nodes (at most 2k - 1 nodes).
// Returns a list of {node, parent} for every node in the subtree. Runs in O(k log k).
vector<pair<int, int>> compress_tree(vector<int> nodes) const {
if (nodes.empty())
return {};
auto &&compare_tour = [&](int a, int b) { return tour_start[a] < tour_start[b]; };
sort(nodes.begin(), nodes.end(), compare_tour);
int k = int(nodes.size());
for (int i = 0; i < k - 1; i++)
nodes.push_back(get_lca(nodes[i], nodes[i + 1]));
sort(nodes.begin() + k, nodes.end(), compare_tour);
inplace_merge(nodes.begin(), nodes.begin() + k, nodes.end(), compare_tour);
nodes.erase(unique(nodes.begin(), nodes.end()), nodes.end());
vector<pair<int, int>> result = {{nodes[0], -1}};
for (int i = 1; i < int(nodes.size()); i++)
result.emplace_back(nodes[i], get_lca(nodes[i], nodes[i - 1]));
return result;
}
};
//----------------------------------- DEBUG -----------------------------------
#define sim template < class c
#define ris return * this
#define dor > debug & operator <<
#define eni(x) sim > typename \
enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) {
sim > struct rge { c b, e; };
sim > rge<c> range(c i, c j) { return rge<c>{i, j}; }
sim > auto dud(c* x) -> decltype(cerr << *x, 0);
sim > char dud(...);
struct debug {
#ifdef LOCAL
~debug() { cerr << endl; }
eni(!=) cerr << boolalpha << i; ris; }
eni(==) ris << range(begin(i), end(i)); }
sim, class b dor(pair < b, c > d) {
ris << "(" << d.first << ", " << d.second << ")";
}
sim dor(rge<c> d) {
*this << "[";
for (auto it = d.b; it != d.e; ++it)
*this << ", " + 2 * (it == d.b) << *it;
ris << "]";
}
#else
sim dor(const c&) { ris; }
#endif
};
#define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] "
// debug & operator << (debug & dd, P p) { dd << "(" << p.x << ", " << p.y << ")"; return dd; }
//----------------------------------- END DEBUG --------------------------------
void run_cases() {
int n;
cin >> n;
vector<vector<int>> adj(n);
for(int i = 1; i < n; i++) {
int u, v;
cin >> u >> v;
--u, --v;
adj[u].push_back(v);
adj[v].push_back(u);
}
LCA tree;
tree.init(adj);
tree.build();
int max_depth = -1, first = -1;
for(int i = 0; i < n; i++) {
if(tree.depth[i] > max_depth) {
max_depth = tree.depth[i];
first = i;
}
}
vector<int> depth(n, 0);
function<void(int,int)> dfs = [&](int node, int par) -> void {
for(int child: adj[node]) {
if(child != par) {
depth[child] = depth[node] + 1;
dfs(child, node);
}
}
};
dfs(first, -1);
debug() << imie(depth);
max_depth = -1;
int second = -1, third = -1;
for(int i = 0; i < n; i++) {
if(depth[i] > max_depth) {
max_depth = depth[i];
second = i;
}
}
int max_dist = -1;
debug() << imie(first) imie(second);
for(int i = 0; i < n; i++) {
if(i == first || i == second) {
continue;
}
int common_node = tree.get_common_node(first, second, i);
int dist = tree.get_dist(common_node, i);
if(dist > max_dist) {
max_dist = dist;
third = i;
}
}
cout << max_depth + max_dist << '\n';
cout << first + 1 << " " << second + 1 << " " << third + 1;
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(nullptr);
int tests = 1;
// cin >> tests;
for(int test = 1;test <= tests;test++) {
run_cases();
}
}