-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopass_a.m
172 lines (153 loc) · 4.11 KB
/
opass_a.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
function [z,gam,ngam,muu,lamclus,nu,kappa,Phi,S]=opass_a(x,A,params);
% Runs the OPASS algorithm
% x is of length N
% A is size PxK
% of spikes in the data.
% params passes in a list of parameters:
% params.alph is the parameter of the CRP
% params.kappa_0, prior precision of mean on NW distribution
% params.nu_0, prior precision of Wishart part of NW distribution
% params.Phi_0, prior cluster covariance*nu_0
% params.a_pii and params.b_pii are the hyperparameters on the probability
% of seeing a spike
% params.bet is the time scale of the ar function
%%
apii=params.a_pii;
bpii=params.b_pii;
alph=params.alph;
Phi0=params.Phi_0;
nu_0=params.nu_0;
kappa_0=params.kappa_0;
bet=params.bet;
%% Internal Parameters
Cmax=50;
curndx=0;
lookahead=500;
rang=40;
tau=1000;
%%
N=numel(x);
[P,K]=size(A);
%% Calculate precision matrix
[acf] = xcorr(x,x,1,'coeff');
%acf(3) = 0;
if abs(acf(3))<1e-3
acf(3)=0;
end
% acf(2)=0;
lambi=zeros(P);
for p=1:P
lambi(p,:)=1-p:P-p;
end
sig=acf(3).^abs(lambi)*cov(x(1:1e5));
sig(1:(P+1):P^2)=cov(x(1:1e5));
lamda=inv(sig);
detlamb=det(lamda);
%%
pii=apii./bpii;
nu=repmat(nu_0,Cmax,1);
Phi=cell(Cmax,1);
lamclus=cell(Cmax,1);
R=cell(Cmax,1);
for c=1:Cmax
Phi{c}=Phi0;
lamclus{c}=inv(Phi0)*nu_0;
R{c}=lamclus{c}*.2;
end
muu00=zeros(K,1);
muu0=zeros(K,Cmax);
kappa=kappa_0*ones(Cmax,1);
muu=zeros(K,Cmax);
tlastspike=zeros(Cmax,1);
itau=1./tau;
muuS=cell(Cmax,1);
lamclusS=cell(Cmax,1);
%%
xpad=[x;zeros(P,1)];
%%
C=0;
nz=0;
z=zeros(N,1);
gam=zeros(N,1);
piip=zeros(N,1);
lthet=zeros(Cmax,1);
ngam=zeros(Cmax,1);
S=zeros(K,N);
lpii=log(pii);
lnpii=log(1-pii);
thr=log(pii./(1-pii));
xm=x;
mT=N;
logdetlamb=log(detlamb);
%%
while curndx<N-P-rang
%% set up parameters
ndx=(curndx+1:min(mT-P-rang,curndx+lookahead));n=numel(ndx);
ndxwind=bsxfun(@plus,ndx,[0:P-1]');
xwind=xpad(ndxwind);
pii=(apii+sum(z))./(bpii+curndx);
thr=log(pii./(1-pii));
%% set up parameters
% ndx=(curndx+1:curndx+lookahead);n=numel(ndx);
%ndx=(curndx+1:min(mT-P-rang,curndx+lookahead));n=numel(ndx);
ngam2=ngam;
nz2=nz;
lthet=log(ngam2./(alph+nz2));lthet(C+1,1)=log(alph./(alph+nz2));
%% calc llk
lnone=-P/2*log(2*pi)+.5*logdetlamb-.5*dot(xwind,((lamda)*xwind));
lon=zeros(C+1,n);
for c=1:C
% lon(c,:)=getllk(xwind,muu(:,c),A,lamclus,sig,kappa(c));
Qt=inv(lamclus{c})+inv(R{c});
Q=sig+A*(Qt*A');
xwindm=bsxfun(@minus,xwind,A*muu(:,c));
tmp=sum(log(diag(chol(Q))));
Re=(ndx-tlastspike(c))<50;
lon(c,:)=-P/2*log(2*pi)-tmp-.5*dot(xwindm,(Q\xwindm))-double(Re)*1e5;
end
Qt=inv(lamclus{C+1})+inv(R{C+1});
Q=sig+A*(Qt*A');
lon(C+1,:)=-P/2*log(2*pi)-sum(log(diag(chol(Q))))-.5*dot(xwind,(Q\xwind));
% lon(C+1,:)=getllk(xwind,muu0,A,lamclus,sig,kappa_0);
lon=bsxfun(@plus,lthet(1:C+1,:),lon);
H=bsxfun(@minus,lon,max(lon));
Hadj=log(sum(exp(H)));
lthr=lnone-max(lon)-Hadj; % Fix this.
%% Find new spike
Q=find(lthr<thr,1,'first');
% no spike
if (numel(Q)==0) || Q>lookahead-rang
curndx=curndx+lookahead-rang;
continue
end
% new spike
[~,offset]=min(lthr(Q:min(Q+rang,numel(lthr))));
Q=Q+offset-1;
nz=nz+1;
Qt=Q+curndx;
z(Qt)=1;
[~,Cnew]=max(lon(:,Q));
if Cnew>C
C=Cnew;
end
Qmat=A'*lamda*A+lamclus{Cnew};
yhat=Qmat\(A'*lamda*xwind(:,Q)+lamclus{Cnew}*muu(:,Cnew));
gam(Qt)=Cnew;
ngam(Cnew)=ngam(Cnew)+1;
deltt=Qt-tlastspike(Cnew);
tlastspike(Cnew)=Qt;
ebet=exp(-bet/deltt);
mhat=muu0(:,Cnew)*(1-ebet)+muu(:,Cnew)*ebet;
muu0(:,Cnew)=(kappa(Cnew).*muu0(:,Cnew)+yhat)./(kappa(Cnew)+1);
Qhat=itau*eye(K)*(1-ebet^2)+inv(R{Cnew})*ebet.^2;
R{Cnew}=inv(Qhat)+lamclus{Cnew};
muu(:,Cnew)=R{Cnew}\(Qhat\mhat+lamclus{Cnew}*yhat);
yhat=Qmat\(A'*lamda*xwind(:,Q)+lamclus{Cnew}*muu(:,Cnew));
Phi{Cnew}=Phi{Cnew}+kappa(Cnew)./(kappa(Cnew)+1)*(yhat-muu(:,Cnew))*(yhat-muu(:,Cnew))'+inv(Qmat);
kappa(Cnew)=kappa(Cnew)+1;
nu(Cnew)=nu(Cnew)+1;
lamclus{Cnew}=inv(Phi{Cnew})*nu(Cnew);
S(:,Qt)=yhat;
curndx=Qt+1;
xpad(Qt:Qt+P-1)=xpad(Qt:Qt+P-1)-A*S(:,Qt);
end