The data this week comes from OurWorldInData.org.
Hannah Ritchie (2017) - "Technology Adoption". Published online at OurWorldInData.org. Retrieved from: 'https://ourworldindata.org/technology-adoption' [Online Resource]
Pew research also has a nice article about the adoption of mobile phones by country.
# Get the Data
# Read in with tidytuesdayR package
# Install from CRAN via: install.packages("tidytuesdayR")
# This loads the readme and all the datasets for the week of interest
# Either ISO-8601 date or year/week works!
tuesdata <- tidytuesdayR::tt_load('2020-11-10')
tuesdata <- tidytuesdayR::tt_load(2020, week = 46)
mobile <- tuesdata$mobile
# Or read in the data manually
mobile <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-10/mobile.csv')
landline <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-10/landline.csv')
variable | class | description |
---|---|---|
entity | character | Country |
code | character | Country code |
year | double | Year |
total_pop | double | Gapminder total population |
gdp_per_cap | double | GDP per capita, PPP (constant 2011 international $) |
mobile_subs | double | Fixed mobile subscriptions (per 100 people) |
continent | character | Continent |
variable | class | description |
---|---|---|
entity | character | Country |
code | character | Country code |
year | double | Year |
total_pop | double | Gapminder total population |
gdp_per_cap | double | GDP per capita, PPP (constant 2011 international $) |
landline_subs | double | Fixed telephone subscriptions (per 100 people) |
continent | character | Continent |
library(tidyverse)
library(countrycode)
library(janitor)
raw_mobile <- read_csv("2020/2020-11-10/mobile-phone-subscriptions-vs-gdp-per-capita.csv")
raw_landline <- read_csv("2020/2020-11-10/fixed-landline-telephone-subscriptions-vs-gdp-per-capita.csv")
mobile_df <- raw_mobile %>%
janitor::clean_names() %>%
rename(
total_pop = 4,
"gdp_per_cap" = 6,
"mobile_subs" = 7
) %>%
filter(year >= 1990) %>%
select(-continent) %>%
mutate(continent = countrycode::countrycode(
entity,
origin = "country.name",
destination = "continent"
)) %>%
filter(!is.na(continent))
landline_df <- raw_landline %>%
janitor::clean_names() %>%
rename(
total_pop = 4,
"gdp_per_cap" = 6,
"landline_subs" = 7
) %>%
filter(year >= 1990) %>%
select(-continent) %>%
mutate(continent = countrycode::countrycode(
entity,
origin = "country.name",
destination = "continent"
)) %>%
filter(!is.na(continent))
mobile_df %>%
write_csv("2020/2020-11-10/mobile.csv")
landline_df %>%
write_csv("2020/2020-11-10/landline.csv")