Skip to content

Latest commit

 

History

History
269 lines (233 loc) · 13.6 KB

readme.md

File metadata and controls

269 lines (233 loc) · 13.6 KB

Picture of the Himalayas from Wikipedia

Himalayan Climbing Expeditions

The data this week comes from The Himalayan Database.

The Himalayan Database is a compilation of records for all expeditions that have climbed in the Nepal Himalaya. The database is based on the expedition archives of Elizabeth Hawley, a longtime journalist based in Kathmandu, and it is supplemented by information gathered from books, alpine journals and correspondence with Himalayan climbers.

The data cover all expeditions from 1905 through Spring 2019 to more than 465 significant peaks in Nepal. Also included are expeditions to both sides of border peaks such as Everest, Cho Oyu, Makalu and Kangchenjunga as well as to some smaller border peaks. Data on expeditions to trekking peaks are included for early attempts, first ascents and major accidents.

h/t to Alex Cookson for sharing and cleaning this data!

This blog post by Alex Cookson explores the data in greater detail.

I don't want to underplay that there are some positives and some awful negatives for native Sherpa climbers. One-third of Everest deaths are Sherpa Climbers.

Also National Geographic has 5 Ways to help the Sherpas of Everest.

Get the data here

# Get the Data

# Read in with tidytuesdayR package 
# Install from CRAN via: install.packages("tidytuesdayR")
# This loads the readme and all the datasets for the week of interest

# Either ISO-8601 date or year/week works!

tuesdata <- tidytuesdayR::tt_load('2020-09-22')
tuesdata <- tidytuesdayR::tt_load(2020, week = 39)

climbers <- tuesdata$climbers

# Or read in the data manually

members <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/members.csv')
expeditions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/expeditions.csv')
peaks <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-09-22/peaks.csv')

Data Dictionary

peaks.csv

variable class description
peak_id character Unique identifier for peak
peak_name character Common name of peak
peak_alternative_name character Alternative name of peak (for example, the "Mount Everest" is "Sagarmatha" in Nepalese)
height_metres double Height of peak in metres
climbing_status character Whether the peak has been climbed
first_ascent_year double Year of first successful ascent, if applicable
first_ascent_country character Country name(s) of expedition members part of the first ascent. Can have multiple values if members were from different countries. Country name is as of date of ascent (for example, "W Germany" for ascents before 1990).
first_ascent_expedition_id character Unique identifier for expedition. Can be linked to expeditions or members tables.

expeditions.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
basecamp_date date Date of expedition arrival at basecamp
highpoint_date date Date of expedition summiting the peak for the first time or, if peak wasn't reached, date of reaching its highpoint
termination_date date Date the expedition was terminated
termination_reason character Primary reason the expedition was terminated. There are two possibilities for a successful expeditions, depending on whether the main peak or a sub-peak was summitted.
highpoint_metres double Elevation highpoint of the expedition
members double Number of expedition members. For expeditions in Nepal, this is usually the number of foreigners listed on the expedition permit. For expeditions in China, this is usually the number of non-hired members.
member_deaths double Number of expeditions members who died
hired_staff double Number of hired staff who went above basecamp
hired_staff_deaths double Number of hired staff who died
oxygen_used logical Whether oxygen was used by at least one member of the expedition
trekking_agency character Name of the trekking agency

members.csv

variable class description
expedition_id character Unique identifier for expedition. Can be linked to peaks or members tables.
member_id character Unique identifier for the person. This is not consistent across expeditions, so you cannot use a single member_id to look up all expeditions a person was part of.
peak_id character Unique identifier for peak. Can be linked to peaks table.
peak_name character Common name for peak
year double Year of expedition
season character Season of expedition (Spring, Summer, etc.)
sex character Sex of the person
age double Age of the person. Depending on the best available data, this could be as of the summit date, the date of death, or the date of arrival at basecamp.
citizenship character Citizenship of the person
expedition_role character Role of the person on the expedition
hired logical Whether the person was hired by the expedition
highpoint_metres double Elevation highpoint of the person
success logical Whether the person was successful in summitting a main peak or sub-peak, depending on the goal of expedition
solo logical Whether the person attempted a solo ascent
oxygen_used logical Whether the person used oxygen
died logical Whether the person died
death_cause character Primary cause of death
death_height_metres double Height at which the person died
injured logical Whether the person was injured
injury_type character Primary cause of injury
injury_height_metres double Height at which the injury occurred

Cleaning Script

# Libraries
library(tidyverse)
library(janitor)


# Peaks
peaks <- read_csv("./himalayan-expeditions/raw/peaks.csv") %>%
  transmute(
    peak_id = PEAKID,
    peak_name = PKNAME,
    peak_alternative_name = PKNAME2,
    height_metres = HEIGHTM,
    climbing_status = PSTATUS,
    first_ascent_year = PYEAR,
    first_ascent_country = PCOUNTRY,
    first_ascent_expedition_id = PEXPID
  ) %>%
  mutate(
    climbing_status = case_when(
      climbing_status == 0 ~ "Unknown",
      climbing_status == 1 ~ "Unclimbed",
      climbing_status == 2 ~ "Climbed"
    )
  )

# Create small dataframe of peak names to join to other dataframes
peak_names <- peaks %>%
  select(peak_id, peak_name)

# Expeditions
expeditions <- read_csv("./himalayan-expeditions/raw/exped.csv") %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    peak_id = PEAKID,
    peak_name,
    year = YEAR,
    season = SEASON,
    basecamp_date = BCDATE,
    highpoint_date = SMTDATE,
    termination_date = TERMDATE,
    termination_reason = TERMREASON,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(HIGHPOINT == 0, NA, HIGHPOINT),
    members = TOTMEMBERS,
    member_deaths = MDEATHS,
    hired_staff = TOTHIRED,
    hired_staff_deaths = HDEATHS,
    oxygen_used = O2USED,
    trekking_agency = AGENCY
  ) %>%
  mutate(
    termination_reason = case_when(
      termination_reason == 0 ~ "Unknown",
      termination_reason == 1 ~ "Success (main peak)",
      termination_reason == 2 ~ "Success (subpeak)",
      termination_reason == 3 ~ "Success (claimed)",
      termination_reason == 4 ~ "Bad weather (storms, high winds)",
      termination_reason == 5 ~ "Bad conditions (deep snow, avalanching, falling ice, or rock)",
      termination_reason == 6 ~ "Accident (death or serious injury)",
      termination_reason == 7 ~ "Illness, AMS, exhaustion, or frostbite",
      termination_reason == 8 ~ "Lack (or loss) of supplies or equipment",
      termination_reason == 9 ~ "Lack of time",
      termination_reason == 10 ~ "Route technically too difficult, lack of experience, strength, or motivation",
      termination_reason == 11 ~ "Did not reach base camp",
      termination_reason == 12 ~ "Did not attempt climb",
      termination_reason == 13 ~ "Attempt rumoured",
      termination_reason == 14 ~ "Other"
    ),
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    )
  )

members <-
  read_csv("./himalayan-expeditions/raw/members.csv", guess_max = 100000) %>%
  left_join(peak_names, by = c("PEAKID" = "peak_id")) %>%
  transmute(
    expedition_id = EXPID,
    member_id = paste(EXPID, MEMBID, sep = "-"),
    peak_id = PEAKID,
    peak_name,
    year = MYEAR,
    season = MSEASON,
    sex = SEX,
    age = CALCAGE,
    citizenship = CITIZEN,
    expedition_role = STATUS,
    hired = HIRED,
    # Highpoint of 0 is most likely missing value
    highpoint_metres = ifelse(MPERHIGHPT == 0, NA, MPERHIGHPT),
    success = MSUCCESS,
    solo = MSOLO,
    oxygen_used = MO2USED,
    died = DEATH,
    death_cause = DEATHTYPE,
    # Height of 0 is most likely missing value
    death_height_metres = ifelse(DEATHHGTM == 0, NA, DEATHHGTM),
    injured = INJURY,
    injury_type = INJURYTYPE,
    # Height of 0 is most likely missing value
    injury_height_metres = ifelse(INJURYHGTM == 0, NA, INJURYHGTM)
  ) %>%
  mutate(
    season = case_when(
      season == 0 ~ "Unknown",
      season == 1 ~ "Spring",
      season == 2 ~ "Summer",
      season == 3 ~ "Autumn",
      season == 4 ~ "Winter"
    ),
    age = ifelse(age == 0, NA, age),
    death_cause = case_when(
      death_cause == 0 ~ "Unspecified",
      death_cause == 1 ~ "AMS",
      death_cause == 2 ~ "Exhaustion",
      death_cause == 3 ~ "Exposure / frostbite",
      death_cause == 4 ~ "Fall",
      death_cause == 5 ~ "Crevasse",
      death_cause == 6 ~ "Icefall collapse",
      death_cause == 7 ~ "Avalanche",
      death_cause == 8 ~ "Falling rock / ice",
      death_cause == 9 ~ "Disappearance (unexplained)",
      death_cause == 10 ~ "Illness (non-AMS)",
      death_cause == 11 ~ "Other",
      death_cause == 12 ~ "Unknown"
    ),
    injury_type = case_when(
      injury_type == 0 ~ "Unspecified",
      injury_type == 1 ~ "AMS",
      injury_type == 2 ~ "Exhaustion",
      injury_type == 3 ~ "Exposure / frostbite",
      injury_type == 4 ~ "Fall",
      injury_type == 5 ~ "Crevasse",
      injury_type == 6 ~ "Icefall collapse",
      injury_type == 7 ~ "Avalanche",
      injury_type == 8 ~ "Falling rock / ice",
      injury_type == 9 ~ "Disappearance (unexplained)",
      injury_type == 10 ~ "Illness (non-AMS)",
      injury_type == 11 ~ "Other",
      injury_type == 12 ~ "Unknown"
    ),
    death_cause = ifelse(died, death_cause, NA_character_),
    death_height_metres = ifelse(died, death_height_metres, NA),
    injury_type = ifelse(injured, injury_type, NA_character_),
    injury_height_metres = ifelse(injured, injury_height_metres, NA)
  )


### Write to CSV
write_csv(expeditions, "./himalayan-expeditions/expeditions.csv")
write_csv(members, "./himalayan-expeditions/members.csv")
write_csv(peaks, "./himalayan-expeditions/peaks.csv")