forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy.cpp
170 lines (141 loc) · 5.32 KB
/
Copy.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include <ATen/native/Copy.h>
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/NativeFunctions.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/quantized/Copy.h>
#include <ATen/quantized/Quantizer.h>
#include <ATen/MemoryOverlap.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/core/op_registration/op_registration.h>
namespace {
using namespace at;
bool copy_transpose_valid(const Tensor& self, const Tensor& src) {
const int MIN_SZ = 60 * 60;
return self.is_contiguous() && src.numel() != 0 && src.dim() == 2 &&
src.stride(0) == 1 && src.stride(1) == src.size(0) &&
self.scalar_type() == src.scalar_type() &&
self.numel() >= MIN_SZ;
}
// special case copy where tensor is contiguous and src is a transposed matrix
// This can be generalized to most copies, but it's trickier
void copy_same_type_transpose_(Tensor& self, const Tensor& src) {
int64_t BLOCK_SZ;
if (self.scalar_type() == kByte) {
BLOCK_SZ = 120;
} else {
BLOCK_SZ = 60;
}
Tensor buf = empty({BLOCK_SZ, BLOCK_SZ}, self.options());
AT_DISPATCH_ALL_TYPES_AND3(kHalf, kBool, kBFloat16, self.scalar_type(), "copy_", [&] {
scalar_t* sp = src.data_ptr<scalar_t>();
scalar_t* rp = self.data_ptr<scalar_t>();
scalar_t* bp = buf.data_ptr<scalar_t>();
int64_t NR = src.size(0);
int64_t NC = src.size(1);
for (int64_t R = 0; R < NR; R += BLOCK_SZ) {
for (int64_t C = 0; C < NC; C += BLOCK_SZ) {
scalar_t* spo = sp + R + C * NR;
scalar_t* rpo = rp + C + R * NC;
int nr = std::min(NR - R, BLOCK_SZ);
int nc = std::min(NC - C, BLOCK_SZ);
// 1. copy columns from src to buf
for (int c = 0; c < nc; c++) {
memcpy(bp + c * BLOCK_SZ, spo + c * NR, nr * sizeof(scalar_t));
}
// 2. transpose buf in place
int rc_max = std::max(nr, nc);
int rc_min = std::min(nr, nc);
for (int r = 0; r < rc_max; r++) {
int end = std::min(r, rc_min);
for (int c = 0; c < end; c++) {
scalar_t tmp = bp[r + BLOCK_SZ * c];
bp[r + BLOCK_SZ * c] = bp[r * BLOCK_SZ + c];
bp[r * BLOCK_SZ + c] = tmp;
}
}
// 3. copy rows from buf to dst
for (int r = 0; r < nr; r++) {
memcpy(rpo + r * NC, bp + r * BLOCK_SZ, nc * sizeof(scalar_t));
}
}
}
});
}
// Devices directly supported by this copy implementation. Other device types
// (e.g. XLA) may be supported by overriding copy_ and _copy_from.
bool is_supported_device(Device device) {
DeviceType device_type = device.type();
return device_type == kCPU || device_type == kCUDA || device_type == kHIP;
}
} // namespace
namespace at {
namespace native {
static Tensor & copy_impl(Tensor & self, const Tensor & src, bool non_blocking) {
// TODO: this should be handled during dispatch, but that's missing...
TORCH_CHECK(self.defined(), "self is undefined");
TORCH_CHECK(src.defined(), "src is undefined");
if (self.is_sparse() && src.is_sparse()) {
return at::copy_sparse_to_sparse_(self, src, non_blocking);
} else if (self.is_sparse() || src.is_sparse()) {
AT_ERROR("copy_() between dense and sparse Tensors is not implemented! Found self type = ",
self.toString(), " and src type = ", src.toString());
}
if (self.is_same(src)) {
return self;
}
// Re-dispatch copies when src device not implemented here (e.g. XLA).
// This includes: cpu_tensor.copy_(xla_tensor) which
// calls xla_tensor._copy_from(cpu_tensor)
if (!is_supported_device(src.device())) {
TORCH_INTERNAL_ASSERT(is_supported_device(self.device()));
at::_copy_from(src, self, non_blocking);
return self;
}
if (self.is_quantized() && !src.is_quantized()) {
return quantized_copy_from_float_(self, src);
}
if (self.is_quantized() && src.is_quantized()) {
TORCH_CHECK(self.qscheme() == src.qscheme(),
"Quantized Copy only works with same qscheme");
TORCH_CHECK(self.scalar_type() == src.scalar_type());
self.set_quantizer_(src.quantizer());
}
if (!self.is_quantized() && src.is_quantized()) {
TORCH_CHECK(false, "Copying from quantized Tensor to non-quantized Tensor is not allowed, please use dequantize to get a float Tensor from a quantized Tensor");
}
auto iter = TensorIterator();
iter.set_check_mem_overlap(true);
iter.add_output(self);
iter.add_input(src);
iter.dont_resize_outputs();
iter.dont_compute_common_dtype();
iter.build();
if (iter.numel() == 0) {
return self;
}
DeviceType device_type = iter.device_type(0);
if (iter.device_type(1) == kCUDA) {
device_type = kCUDA;
}
// TODO: if we need to, we can also enable this path for quantized tensor
if (device_type == kCPU && copy_transpose_valid(self, src) && !self.is_quantized()) {
copy_same_type_transpose_(self, src);
return self;
}
copy_stub(device_type, iter, non_blocking);
return self;
}
Tensor& copy_(Tensor& self, const Tensor& src, bool non_blocking) {
auto maybe_outnames = namedinference::compute_broadcast_outnames(self, src);
{
NoNamesGuard guard;
copy_impl(self, src, non_blocking);
}
namedinference::propagate_names_if_nonempty(self, maybe_outnames);
return self;
}
TORCH_LIBRARY_IMPL(aten, CatchAll, m) { m.impl_UNBOXED("copy_", copy_); }
DEFINE_DISPATCH(copy_stub);
} // namespace native
} // namespace at