-
Notifications
You must be signed in to change notification settings - Fork 6
/
test.c
901 lines (814 loc) · 23.2 KB
/
test.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
#include <stdint.h>
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <x86intrin.h>
// compile with `cc -g -std=gnu99 -O3 -march=native -o test test.c jump.s`
// or on systems which need librt: `cc -g -std=gnu99 -O3 -march=native -o test test.c jump.s -lrt`
// static compile: `cc -s -static -std=gnu99 -O3 -march=<arch> -o test test.c jump.s`
// or linux: `cc -s -static -std=gnu99 -O3 -march=<arch> -o test test.c jump.s -lrt -pthread -Wl,--whole-archive -lpthread -Wl,--no-whole-archive`
/**************************************/
// boiler plate stuff
typedef void (*stratfunc_t)(void* dst);
typedef int (*jitfunc_t)();
const int PRE_ITERS = 50;
const int ITERS = 1000;
const int TRIALS = 10;
#define TEST_TRIALS 1
const int CODE_SIZE = 1024;
// aliased memory code adapted from https://nullprogram.com/blog/2016/04/10/
#if defined(_WINDOWS) || defined(__WINDOWS__) || defined(_WIN32) || defined(_WIN64)
# include <windows.h>
static __inline__ void* jit_alloc(size_t len) {
return VirtualAlloc(NULL, len, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
}
static __inline__ void jit_free(void* mem, size_t len) {
VirtualFree(mem, 0, MEM_RELEASE);
}
static __inline__ void jit_alloc_wx_alias(size_t len, void** wmem, void** xmem) {
HANDLE m = CreateFileMapping(INVALID_HANDLE_VALUE, NULL, PAGE_EXECUTE_READWRITE, 0, len, NULL);
if (m == NULL) {
*wmem = NULL; *xmem = NULL;
return;
}
*wmem = MapViewOfFile(m, FILE_MAP_READ | FILE_MAP_WRITE, 0, 0, len);
*xmem = MapViewOfFile(m, FILE_MAP_READ | FILE_MAP_EXECUTE, 0, 0, len);
if(!*wmem || !*xmem) {
if(*wmem) UnmapViewOfFile(*wmem);
if(*xmem) UnmapViewOfFile(*xmem);
*wmem = NULL; *xmem = NULL;
}
CloseHandle(m);
}
static __inline__ void jit_free_wx_alias(size_t len, void* wmem, void* xmem) {
UnmapViewOfFile(wmem);
UnmapViewOfFile(xmem);
(void)len;
}
#else
//# define _POSIX_C_SOURCE 200112L // ftruncate()
# include <sys/mman.h>
static __inline__ void* jit_alloc(size_t len) {
return mmap(NULL, len, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANON, -1, 0);
}
static __inline__ void jit_free(void* mem, size_t len) {
munmap(mem, len);
}
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
static __inline__ void jit_alloc_wx_alias(size_t len, void** wmem, void** xmem) {
char path[128];
snprintf(path, sizeof(path), "/%s(%lu)", __FUNCTION__, (long)getpid());
int fd = shm_open(path, O_RDWR | O_CREAT | O_EXCL, 0700);
if (fd == -1) {
*wmem = NULL; *xmem = NULL;
return;
}
shm_unlink(path);
if (ftruncate(fd, len) == -1) {
close(fd);
*wmem = NULL; *xmem = NULL;
return;
}
*wmem = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
*xmem = mmap(NULL, len, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
if(!*wmem || !*xmem) {
if(*wmem) munmap(*wmem, len);
if(*xmem) munmap(*xmem, len);
*wmem = NULL; *xmem = NULL;
}
close(fd);
}
static __inline__ void jit_free_wx_alias(size_t len, void* wmem, void* xmem) {
munmap(wmem, len);
munmap(xmem, len);
}
#endif
#ifdef _MSC_VER
# define ALIGN_TO(a, v) __declspec(align(a)) v
# define ALIGN_ALLOC(buf, len, align) *(void**)&(buf) = _aligned_malloc((len), align)
# define ALIGN_FREE _aligned_free
# include <intrin.h>
#else
# define ALIGN_TO(a, v) v __attribute__((aligned(a)))
# include <stdlib.h>
# define ALIGN_ALLOC(buf, len, align) if(posix_memalign((void**)&(buf), align, (len))) (buf) = NULL
# define ALIGN_FREE free
#endif
typedef struct {
void* wmem; void* xmem;
} jit_wx_pair;
static __inline__ uint64_t rdtsc() {
#ifdef _MSC_VER
return __rdtsc();
#else
uint32_t low, high;
__asm__ __volatile__ ("rdtsc" : "=a" (low), "=d" (high));
return (uint64_t)high << 32 | low;
#endif
}
static uint64_t time_jit(stratfunc_t fn, void* dst) {
// to try to reduce variability, run multiple trials, and find lowest value
uint64_t result = ~0ULL;
for(int trial=0; trial<TEST_TRIALS; trial++) {
uint64_t starttime, stoptime;
// warmup (try to exclude variability present in initial rounds)
for(int i=0; i<PRE_ITERS; i++)
fn(dst);
starttime = rdtsc();
for(int i=0; i<ITERS; i++)
fn(dst);
stoptime = rdtsc();
stoptime -= starttime;
if(stoptime < result) result = stoptime;
}
return result;
}
/**************************************/
// the JITting function
// this is just a simple pointless sequence of ADD instructions, written one at a time, similar to how a simple JIT might do it
static void write_code(void* dst, size_t offset) {
static uint32_t base = 0;
uint8_t* code = (uint8_t*)dst;
while(offset<CODE_SIZE-6) {
code[offset++] = 5; // ADD eax, imm
memcpy(code+offset, &base, 4); // immediate value
offset += 4;
base = base*2 + 1; // "random" transformation
}
code[offset] = 0xc3; // RET
}
// JIT code in reverse order
static void write_code_reverse(void* dst) {
static uint32_t base = 0;
uint8_t* code = (uint8_t*)dst;
size_t p = CODE_SIZE-6;
p -= p%5;
code[p] = 0xc3; // RET
while(p) {
p -= 5;
code[p] = 5; // ADD eax, imm
memcpy(code+p+1, &base, 4); // immediate value
base = base*2 + 1; // "random" transformation
}
}
/**************************************/
// strategies for apply the JIT function
// do nothing special - base case
static void jit_plain(void* dst) {
write_code(dst, 0);
((jitfunc_t)dst)();
}
// only write, don't execute; this is just to show the overhead of the CPU handling JIT condition
static void* static_code = NULL;
static void jit_only_init() {
static_code = jit_alloc(CODE_SIZE);
write_code(static_code, 0);
}
static void jit_only(void* dst) {
(void)dst;
// on Zen1, it seems that writing to 'dst' triggers SMC behaviour, even if it's not being executed, so we write to a separate location instead
ALIGN_TO(64, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
volatile char unused = ((char*)tmp)[CODE_SIZE-1]; // prevent compiler eliminating `write_code`
(void)unused;
((jitfunc_t)static_code)();
}
// write JIT code in reverse
static void jit_reverse(void* dst) {
write_code_reverse(dst);
((jitfunc_t)dst)();
}
// JIT to temporary location on stack, then copy across to destination
static void jit_memcpy(void* dst) {
ALIGN_TO(64, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
memcpy(dst, tmp, CODE_SIZE);
((jitfunc_t)dst)();
}
#ifdef __GNUC__
// explicitly copy using REP MOVS
static void jit_memcpy_movsb(void* dst) {
ALIGN_TO(64, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
void* tmpDst = dst;
void* tmpSrc = tmp;
size_t size = CODE_SIZE;
asm volatile(
"rep movsb\n"
: "+c"(size), "+S"(tmpSrc), "+D"(tmpDst)
:
: "memory"
);
((jitfunc_t)dst)();
}
# ifdef __x86_64__
static void jit_memcpy_movsq(void* dst) {
ALIGN_TO(64, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
void* tmpDst = dst;
void* tmpSrc = tmp;
size_t size = (CODE_SIZE+7)>>3;
asm volatile(
"rep movsq\n"
: "+c"(size), "+S"(tmpSrc), "+D"(tmpDst)
:
: "memory"
);
((jitfunc_t)dst)();
}
# endif
#endif
// copies using vector instructions (though compiler sometimes turns these into memcpy calls anyway)
static void jit_memcpy_sse2(void* dst) {
ALIGN_TO(16, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=0; i<((CODE_SIZE+15)&~15); i+=16)
_mm_store_si128((__m128i*)(dst + i), _mm_load_si128((__m128i*)((char*)tmp + i)));
((jitfunc_t)dst)();
}
static void jit_memcpy_sse2_nt(void* dst) {
ALIGN_TO(16, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=0; i<((CODE_SIZE+15)&~15); i+=16)
_mm_stream_si128((__m128i*)(dst + i), _mm_load_si128((__m128i*)((char*)tmp + i)));
((jitfunc_t)dst)();
}
#ifdef __AVX__
static void jit_memcpy_avx(void* dst) {
ALIGN_TO(32, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=0; i<((CODE_SIZE+31)&~31); i+=32)
_mm256_store_si256((__m256i*)(dst + i), _mm256_load_si256((__m256i*)((char*)tmp + i)));
((jitfunc_t)dst)();
}
static void jit_memcpy_avx_nt(void* dst) {
ALIGN_TO(32, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=0; i<((CODE_SIZE+31)&~31); i+=32)
_mm256_stream_si256((__m256i*)(dst + i), _mm256_load_si256((__m256i*)((char*)tmp + i)));
((jitfunc_t)dst)();
}
#endif
#ifdef __AVX512F__
static void jit_memcpy_avx3(void* dst) {
ALIGN_TO(64, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=0; i<((CODE_SIZE+63)&~63); i+=64)
_mm512_store_si512(dst + i, _mm512_load_si512((char*)tmp + i));
((jitfunc_t)dst)();
}
static void jit_memcpy_avx3_nt(void* dst) {
ALIGN_TO(64, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=0; i<((CODE_SIZE+63)&~63); i+=64)
_mm512_stream_si512(dst + i, _mm512_load_si512((char*)tmp + i));
((jitfunc_t)dst)();
}
#endif
static void jit_memcpy_sse2_rev(void* dst) {
ALIGN_TO(16, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=((CODE_SIZE+15)&~15)-16; i>=0; i-=16)
_mm_store_si128((__m128i*)(dst + i), _mm_load_si128((__m128i*)((char*)tmp + i)));
((jitfunc_t)dst)();
}
#ifdef __AVX__
static void jit_memcpy_avx_rev(void* dst) {
ALIGN_TO(32, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=((CODE_SIZE+31)&~31)-32; i>=0; i-=32)
_mm256_store_si256((__m256i*)(dst + i), _mm256_load_si256((__m256i*)((char*)tmp + i)));
((jitfunc_t)dst)();
}
#endif
#ifdef __AVX512F__
static void jit_memcpy_avx3_rev(void* dst) {
ALIGN_TO(64, char* tmp[CODE_SIZE]);
write_code(tmp, 0);
for(int i=((CODE_SIZE+63)&~63)-64; i>=0; i-=64)
_mm512_store_si512(dst + i, _mm512_load_si512((char*)tmp + i));
((jitfunc_t)dst)();
}
#endif
// clear JIT memory before writing
static void jit_clr(void* dst) {
memset(dst, 0, CODE_SIZE);
write_code(dst, 0);
((jitfunc_t)dst)();
}
// fill memory with RET instruction before writing
static void jit_clr_ret(void* dst) {
memset(dst, 0xC3, CODE_SIZE);
write_code(dst, 0);
((jitfunc_t)dst)();
}
#ifdef __GNUC__
// explicitly clear memory using REP STOS
static void jit_clr_stosb(void* dst) {
void* tmpDst = dst;
size_t size = CODE_SIZE;
asm volatile(
"rep stosb\n"
: "+c"(size), "+D"(tmpDst)
: "a"(0)
: "memory"
);
write_code(dst, 0);
((jitfunc_t)dst)();
}
# ifdef __x86_64__
static void jit_clr_stosq(void* dst) {
void* tmpDst = dst;
size_t size = (CODE_SIZE+7)>>3;
asm volatile(
"rep stosq\n"
: "+c"(size), "+D"(tmpDst)
: "a"(0)
: "memory"
);
write_code(dst, 0);
((jitfunc_t)dst)();
}
# endif
#endif
// clear first byte per cacheline before writing
static void jit_clr_1byte(void* dst) {
for(int i=0; i<CODE_SIZE; i+=64)
((char*)dst)[i] = 0;
// memset(dst + i, 0, 1);
write_code(dst, 0);
((jitfunc_t)dst)();
}
// clear two cachelines with a straddled 2-byte write
static void jit_clr_2byte(void* dst) {
uint16_t* code = (uint16_t*)((uint8_t*)dst + 63); // straddle cacheline boundary
for(int i=0; i<CODE_SIZE/2-33; i+=64)
code[i] = 0;
//for(int i=0; i<CODE_SIZE-65; i+=128)
// memset(dst + i + 63, 0, 2);
write_code(dst, 0);
((jitfunc_t)dst)();
}
#ifdef __AVX512F__
// clear via scatter instruction, writing 4 bytes per cacheline
static void jit_clr_scatter(void* dst) {
for(int i=0; i<CODE_SIZE; i+=64*16)
_mm512_i32scatter_epi32(dst + i, _mm512_set_epi32(
0x3c0, 0x380, 0x340, 0x300,
0x2c0, 0x280, 0x240, 0x200,
0x1c0, 0x180, 0x140, 0x100,
0x0c0, 0x080, 0x040, 0x000
), _mm512_setzero_si512(), 1);
write_code(dst, 0);
((jitfunc_t)dst)();
}
#endif
// clear memory using SSE nt writes
static void jit_clr_sse2_nt(void* dst) {
for(int i=0; i<((CODE_SIZE+15)&~15); i+=16)
_mm_stream_si128((__m128i*)(dst + i), _mm_setzero_si128());
write_code(dst, 0);
((jitfunc_t)dst)();
}
// as above, but only 1 write per cacheline
static void jit_clr_sse2_1nt(void* dst) {
for(int i=0; i<((CODE_SIZE+15)&~15); i+=64)
_mm_stream_si128((__m128i*)(dst + i), _mm_setzero_si128());
write_code(dst, 0);
((jitfunc_t)dst)();
}
// 256-bit versions of above
#ifdef __AVX__
static void jit_clr_avx_nt(void* dst) {
for(int i=0; i<((CODE_SIZE+31)&~31); i+=32)
_mm256_stream_si256((__m256i*)(dst + i), _mm256_setzero_si256());
write_code(dst, 0);
((jitfunc_t)dst)();
}
static void jit_clr_avx_1nt(void* dst) {
for(int i=0; i<((CODE_SIZE+31)&~31); i+=64)
_mm256_stream_si256((__m256i*)(dst + i), _mm256_setzero_si256());
write_code(dst, 0);
((jitfunc_t)dst)();
}
#endif
#ifdef __AVX512F__
// clear memory using AVX512 (full cacheline) nt writes
static void jit_clr_avx3_nt(void* dst) {
for(int i=0; i<((CODE_SIZE+63)&~63); i+=64)
_mm512_stream_si512(dst + i, _mm512_setzero_si512());
write_code(dst, 0);
((jitfunc_t)dst)();
}
#endif
// clear JIT memory then write in reverse
static void jit_clr_reverse(void* dst) {
memset(dst, 0, CODE_SIZE);
write_code_reverse(dst);
((jitfunc_t)dst)();
}
// other reverse variants of above
static void jit_clr_1byte_rev(void* dst) {
for(int i=0; i<CODE_SIZE; i+=64)
((char*)dst)[i] = 0;
write_code_reverse(dst);
((jitfunc_t)dst)();
}
static void jit_clr_2byte_rev(void* dst) {
uint16_t* code = (uint16_t*)((uint8_t*)dst + 63); // straddle cacheline boundary
for(int i=0; i<CODE_SIZE/2-33; i+=64)
code[i] = 0;
write_code_reverse(dst);
((jitfunc_t)dst)();
}
#ifdef __CLZERO__
// clear via CLZERO
static void jit_clzero(void* dst) {
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_clzero(code + i);
write_code(dst, 0);
((jitfunc_t)dst)();
}
#endif
#ifdef __CLDEMOTE__
// apply CLDEMOTE before writing JIT
static void jit_cldemote(void* dst) {
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_cldemote(code + i);
write_code(dst, 0);
((jitfunc_t)dst)();
}
// apply it before execution
static void jit_cldemote_after(void* dst) {
write_code(dst, 0);
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_cldemote(code + i);
((jitfunc_t)dst)();
}
#endif
// CLFLUSH region before JIT/execution
static void jit_clflush(void* dst) {
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_clflush(code + i);
write_code(dst, 0);
((jitfunc_t)dst)();
}
static void jit_clflush_after(void* dst) {
write_code(dst, 0);
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_clflush(code + i);
((jitfunc_t)dst)();
}
#ifdef __CLFLUSHOPT__
// CLFLUSHOPT region before JIT/execution
static void jit_clflushopt(void* dst) {
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_clflushopt(code + i);
write_code(dst, 0);
((jitfunc_t)dst)();
}
static void jit_clflushopt_after(void* dst) {
write_code(dst, 0);
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_clflushopt(code + i);
((jitfunc_t)dst)();
}
#endif
// PREFETCHW (write hint?) region before JIT
// seems to generally run, even if PREFETCHW not supported by the processor
static void jit_prefetchw(void* dst) {
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_prefetch(code + i, _MM_HINT_ET1);
write_code(dst, 0);
((jitfunc_t)dst)();
}
// PREFETCHT1 (L2 cache?) region before JIT
static void jit_prefetcht1(void* dst) {
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_prefetch(code + i, _MM_HINT_T1);
write_code(dst, 0);
((jitfunc_t)dst)();
}
static void jit_prefetcht1_after(void* dst) {
write_code(dst, 0);
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_prefetch(code + i, _MM_HINT_T1);
((jitfunc_t)dst)();
}
// write a single UD2 instruction at beginning, JIT, then write first instruction last
static void jit_ud2(void* dst) {
*(uint16_t*)dst = 0xb0f; // UD2
write_code(dst, 5);
// write ADD eax, imm
*(uint8_t*)dst = 5;
*(uint32_t*)((char*)dst+1) = 0x55555555;
((jitfunc_t)dst)();
}
// as above, but also clear remaining
static void jit_ud2_clr(void* dst) {
*(uint16_t*)dst = 0xb0f; // UD2
memset(dst + 2, 0, CODE_SIZE-2);
write_code(dst, 5);
// write ADD eax, imm
*(uint8_t*)dst = 5;
*(uint32_t*)((char*)dst+1) = 0x55555555;
((jitfunc_t)dst)();
}
static void jit_ud2_clr_1byte(void* dst) {
*(uint16_t*)dst = 0xb0f; // UD2
for(int i=64; i<CODE_SIZE; i+=64)
((char*)dst)[i] = 0;
write_code(dst, 5);
// write ADD eax, imm
*(uint8_t*)dst = 5;
*(uint32_t*)((char*)dst+1) = 0x55555555;
((jitfunc_t)dst)();
}
// realloc a whole new region per JIT invocation (to demonstrate the cost of W^X)
static void jit_realloc(void* dst) {
void* tmp = jit_alloc(CODE_SIZE);
write_code(tmp, 0);
((jitfunc_t)tmp)();
jit_free(tmp, CODE_SIZE);
}
#define NUM_REGIONS 64
// alternate between multiple destinations; does trash the cache somewhat
static void jit_2region(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
cnt = (cnt+1) % 2;
}
static void jit_4region(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
cnt = (cnt+1) % 4;
}
static void jit_8region(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
cnt = (cnt+1) % 8;
}
static void jit_16region(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
cnt = (cnt+1) % 16;
}
static void jit_32region(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
cnt = (cnt+1) % 32;
}
static void jit_64region(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
cnt = (cnt+1) % 64;
}
// alternate between regions, but flush after use
static void jit_2region_flush(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_clflush(code + i);
cnt = (cnt+1) % 2;
}
#ifdef __CLFLUSHOPT__
static void jit_2region_flushopt(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
uint8_t* code = (uint8_t*)dst;
for(int i=0; i<CODE_SIZE; i+=64)
_mm_clflushopt(code + i);
cnt = (cnt+1) % 2;
}
#endif
// like above, but clear region afterwards instead
static void jit_2region_clr(void* regions) {
static unsigned cnt = 0;
void* dst = ((void**)regions)[cnt];
write_code(dst, 0);
((jitfunc_t)dst)();
memset(dst, 0, CODE_SIZE);
cnt = (cnt+1) % 2;
}
// run 32KB of instructions by jumping across cachelines
extern void jmp32k(void);
static void jit_jmp32k(void* dst) {
jmp32k();
write_code(dst, 0);
((jitfunc_t)dst)();
}
// as above, but align jump instructions to straddle cachelines, requiring half the number of jumps
extern void jmp32k_u(void);
static void jit_jmp32k_unalign(void* dst) {
jmp32k_u();
write_code(dst, 0);
((jitfunc_t)dst)();
}
// 64k versions of above
extern void jmp64k(void);
static void jit_jmp64k(void* dst) {
jmp64k();
write_code(dst, 0);
((jitfunc_t)dst)();
}
extern void jmp64k_u(void);
static void jit_jmp64k_unalign(void* dst) {
jmp64k_u();
write_code(dst, 0);
((jitfunc_t)dst)();
}
// does fencing do anything?
static void jit_mfence(void* dst) {
write_code(dst, 0);
_mm_mfence();
((jitfunc_t)dst)();
}
// does serializing do anything?
#ifdef _MSC_VER
# include <intrin.h>
# define _cpuid __cpuid
#else
# include <cpuid.h>
# define _cpuid(ar, eax) __cpuid(eax, ar[0], ar[1], ar[2], ar[3])
#endif
static void jit_serialize(void* dst) {
write_code(dst, 0);
int id[4];
_cpuid(id, 1);
volatile int unused = id[0];
(void)unused;
((jitfunc_t)dst)();
}
// write and execute from different virtual addresses, mapped to the same physical page
static void jit_dual_mapping(void* dst) {
jit_wx_pair* pair = (jit_wx_pair*)dst;
write_code(pair->wmem, 0);
// serialize to synchronize data between two mappings
int id[4];
_cpuid(id, 1);
volatile int unused = id[0];
(void)unused;
((jitfunc_t)pair->xmem)();
}
int main(void) {
void* dst[NUM_REGIONS];
for(int i=0; i<NUM_REGIONS; i++) {
void* region = jit_alloc(CODE_SIZE);
if(!region) {
printf("Failed to allocate write+execute page\n");
return 1;
}
if((uintptr_t)region & 63) {
printf("Allocated page isn't cacheline aligned?!\n");
return 1;
}
dst[i] = region;
}
jit_wx_pair wx_pair = {0};
jit_alloc_wx_alias(CODE_SIZE, &wx_pair.wmem, &wx_pair.xmem);
if(!wx_pair.wmem) {
printf("Failed to allocate shared page\n");
return 1;
}
jit_only_init();
uint64_t times[100];
memset(times, 0xff, sizeof(times));
int trial = TRIALS;
while(trial--) {
int test = 0;
// to reduce variability, try to sample the fastest time
#define DO_TIME_TEST(fn, dst) { \
uint64_t time = time_jit(fn, dst); \
if(times[test] > time) times[test] = time; \
if(!trial) \
printf("%20s %9" PRIu64 " rdtsc counts\n", #fn, times[test]); \
test++; \
}
DO_TIME_TEST(jit_plain, dst[0]);
DO_TIME_TEST(jit_only, dst[0]);
DO_TIME_TEST(jit_reverse, dst[0]);
DO_TIME_TEST(jit_memcpy, dst[0]);
#ifdef __GNUC__
DO_TIME_TEST(jit_memcpy_movsb, dst[0]);
# ifdef __x86_64__
DO_TIME_TEST(jit_memcpy_movsq, dst[0]);
# endif
#endif
DO_TIME_TEST(jit_memcpy_sse2, dst[0]);
DO_TIME_TEST(jit_memcpy_sse2_nt, dst[0]);
#ifdef __AVX__
DO_TIME_TEST(jit_memcpy_avx, dst[0]);
DO_TIME_TEST(jit_memcpy_avx_nt, dst[0]);
#endif
#ifdef __AVX512F__
DO_TIME_TEST(jit_memcpy_avx3, dst[0]);
DO_TIME_TEST(jit_memcpy_avx3_nt, dst[0]);
#endif
DO_TIME_TEST(jit_memcpy_sse2_rev, dst[0]);
#ifdef __AVX__
DO_TIME_TEST(jit_memcpy_avx_rev, dst[0]);
#endif
#ifdef __AVX512F__
DO_TIME_TEST(jit_memcpy_avx3_rev, dst[0]);
#endif
DO_TIME_TEST(jit_clr, dst[0]);
DO_TIME_TEST(jit_clr_ret, dst[0]);
#ifdef __GNUC__
DO_TIME_TEST(jit_clr_stosb, dst[0]);
# ifdef __x86_64__
DO_TIME_TEST(jit_clr_stosq, dst[0]);
# endif
#endif
DO_TIME_TEST(jit_clr_1byte, dst[0]);
DO_TIME_TEST(jit_clr_2byte, dst[0]);
#ifdef __AVX512F__
DO_TIME_TEST(jit_clr_scatter, dst[0]);
#endif
DO_TIME_TEST(jit_clr_sse2_nt, dst[0]);
DO_TIME_TEST(jit_clr_sse2_1nt, dst[0]);
#ifdef __AVX__
DO_TIME_TEST(jit_clr_avx_nt, dst[0]);
DO_TIME_TEST(jit_clr_avx_1nt, dst[0]);
#endif
#ifdef __AVX512F__
DO_TIME_TEST(jit_clr_avx3_nt, dst[0]);
#endif
DO_TIME_TEST(jit_clr_reverse, dst[0]);
DO_TIME_TEST(jit_clr_1byte_rev, dst[0]);
DO_TIME_TEST(jit_clr_2byte_rev, dst[0]);
#ifdef __CLZERO__
DO_TIME_TEST(jit_clzero, dst[0]);
#endif
#ifdef __CLDEMOTE__
DO_TIME_TEST(jit_cldemote, dst[0]);
DO_TIME_TEST(jit_cldemote_after, dst[0]);
#endif
DO_TIME_TEST(jit_clflush, dst[0]);
DO_TIME_TEST(jit_clflush_after, dst[0]);
#ifdef __CLFLUSHOPT__
DO_TIME_TEST(jit_clflushopt, dst[0]);
DO_TIME_TEST(jit_clflushopt_after, dst[0]);
#endif
//#ifdef __PREFETCHWT1__
DO_TIME_TEST(jit_prefetchw, dst[0]);
//#endif
DO_TIME_TEST(jit_prefetcht1, dst[0]);
DO_TIME_TEST(jit_prefetcht1_after, dst[0]);
DO_TIME_TEST(jit_ud2, dst[0]);
DO_TIME_TEST(jit_ud2_clr, dst[0]);
DO_TIME_TEST(jit_ud2_clr_1byte, dst[0]);
DO_TIME_TEST(jit_2region, dst);
DO_TIME_TEST(jit_4region, dst);
DO_TIME_TEST(jit_8region, dst);
DO_TIME_TEST(jit_16region, dst);
DO_TIME_TEST(jit_32region, dst);
DO_TIME_TEST(jit_64region, dst);
DO_TIME_TEST(jit_2region_flush, dst);
#ifdef __CLFLUSHOPT__
DO_TIME_TEST(jit_2region_flushopt, dst);
#endif
DO_TIME_TEST(jit_2region_clr, dst);
DO_TIME_TEST(jit_jmp32k, dst[0]);
DO_TIME_TEST(jit_jmp32k_unalign, dst[0]);
DO_TIME_TEST(jit_jmp64k, dst[0]);
DO_TIME_TEST(jit_jmp64k_unalign, dst[0]);
DO_TIME_TEST(jit_mfence, dst[0]);
DO_TIME_TEST(jit_serialize, dst[0]);
DO_TIME_TEST(jit_dual_mapping, &wx_pair);
DO_TIME_TEST(jit_realloc, dst[0]);
}
for(int i=0; i<NUM_REGIONS; i++)
jit_free(dst[i], CODE_SIZE);
jit_free_wx_alias(CODE_SIZE, wx_pair.wmem, wx_pair.xmem);
return 0;
}